Loading…

CO₂ reduction on pure Cu produces only H₂ after subsurface O is depleted: Theory and experiment

We elucidate the role of subsurface oxygen on the production of C₂ products from CO₂ reduction over Cu electrocatalysts using the newly developed grand canonical potential kinetics density functional theory method, which predicts that the rate of C₂ production on pure Cu with no O is ∼500 times slow...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2021-06, Vol.118 (23), p.1-8
Main Authors: Liu, Guiji, Lee, Michelle, Kwon, Soonho, Zeng, Guosong, Eichhorn, Johanna, Buckley, Aya K., Toste, F. Dean, Goddard, William A., Toma, Francesca M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue 23
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Liu, Guiji
Lee, Michelle
Kwon, Soonho
Zeng, Guosong
Eichhorn, Johanna
Buckley, Aya K.
Toste, F. Dean
Goddard, William A.
Toma, Francesca M.
description We elucidate the role of subsurface oxygen on the production of C₂ products from CO₂ reduction over Cu electrocatalysts using the newly developed grand canonical potential kinetics density functional theory method, which predicts that the rate of C₂ production on pure Cu with no O is ∼500 times slower than H₂ evolution. In contrast, starting with Cu₂O, the rate of C₂ production is >5,000 times faster than pure Cu(111) and comparable to H₂ production. To validate these predictions experimentally, we combined time-dependent product detection with multiple characterization techniques to show that ethylene production decreases substantially with time and that a sufficiently prolonged reaction time (up to 20 h) leads only to H₂ evolution with ethylene production ∼1,000 times slower, in agreement with theory. This result shows that maintaining substantial subsurface oxygen is essential for long-term C₂ production with Cu catalysts.
doi_str_mv 10.1073/pnas.2012649118
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8201769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27040861</jstor_id><sourcerecordid>27040861</sourcerecordid><originalsourceid>FETCH-LOGICAL-j293t-fe1b96b441f99d1f8e244102f7bf91960eaca67e6a7023b34d715039b3e151633</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK2ePQkLXrykzn5kN3sRpKgVCr3oOWySiaakSdzNCr36U_0lrlQEhYH5eniZeQk5ZzBnoMX10Fk_58C4koax7IBMGRiWxA4OyRSA6ySTXE7IifcbADBpBsdkIiRkQgo-JavF-vPjgzqsQjk2fUdjDMEhXQQ6uD5O0cdZu6PLb87WIzrqQ-GDq22JdE0bTyscWhyxOiVHtW09nv3kGXm-v3taLJPV-uFxcbtKNtyIMamRFUYVUrLamIrVGfJYA691URtmFKAtrdKorAYuCiErzVIQphDIUqaEmJGbve4Qii1WJXajs20-uGZr3S7vbZP_3XTNa_7Sv-dZtEorEwWufgRc_xbQj_m28SW2re2wDz7nqdBK6pTpiF7-Qzd9cF18L1IS0hSij5G62FMbP_bu9xKuITqtmPgC7KaAdw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540550432</pqid></control><display><type>article</type><title>CO₂ reduction on pure Cu produces only H₂ after subsurface O is depleted: Theory and experiment</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Liu, Guiji ; Lee, Michelle ; Kwon, Soonho ; Zeng, Guosong ; Eichhorn, Johanna ; Buckley, Aya K. ; Toste, F. Dean ; Goddard, William A. ; Toma, Francesca M.</creator><creatorcontrib>Liu, Guiji ; Lee, Michelle ; Kwon, Soonho ; Zeng, Guosong ; Eichhorn, Johanna ; Buckley, Aya K. ; Toste, F. Dean ; Goddard, William A. ; Toma, Francesca M.</creatorcontrib><description>We elucidate the role of subsurface oxygen on the production of C₂ products from CO₂ reduction over Cu electrocatalysts using the newly developed grand canonical potential kinetics density functional theory method, which predicts that the rate of C₂ production on pure Cu with no O is ∼500 times slower than H₂ evolution. In contrast, starting with Cu₂O, the rate of C₂ production is &gt;5,000 times faster than pure Cu(111) and comparable to H₂ production. To validate these predictions experimentally, we combined time-dependent product detection with multiple characterization techniques to show that ethylene production decreases substantially with time and that a sufficiently prolonged reaction time (up to 20 h) leads only to H₂ evolution with ethylene production ∼1,000 times slower, in agreement with theory. This result shows that maintaining substantial subsurface oxygen is essential for long-term C₂ production with Cu catalysts.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2012649118</identifier><identifier>PMID: 34083432</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Carbon dioxide ; Catalysts ; Copper ; Density functional theory ; Electrocatalysts ; Ethylene ; Hydrogen evolution ; Hydrogen production ; Oxygen ; Physical Sciences ; Reaction time ; Reduction ; Time dependence</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (23), p.1-8</ispartof><rights>Copyright National Academy of Sciences Jun 8, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27040861$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27040861$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids></links><search><creatorcontrib>Liu, Guiji</creatorcontrib><creatorcontrib>Lee, Michelle</creatorcontrib><creatorcontrib>Kwon, Soonho</creatorcontrib><creatorcontrib>Zeng, Guosong</creatorcontrib><creatorcontrib>Eichhorn, Johanna</creatorcontrib><creatorcontrib>Buckley, Aya K.</creatorcontrib><creatorcontrib>Toste, F. Dean</creatorcontrib><creatorcontrib>Goddard, William A.</creatorcontrib><creatorcontrib>Toma, Francesca M.</creatorcontrib><title>CO₂ reduction on pure Cu produces only H₂ after subsurface O is depleted: Theory and experiment</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>We elucidate the role of subsurface oxygen on the production of C₂ products from CO₂ reduction over Cu electrocatalysts using the newly developed grand canonical potential kinetics density functional theory method, which predicts that the rate of C₂ production on pure Cu with no O is ∼500 times slower than H₂ evolution. In contrast, starting with Cu₂O, the rate of C₂ production is &gt;5,000 times faster than pure Cu(111) and comparable to H₂ production. To validate these predictions experimentally, we combined time-dependent product detection with multiple characterization techniques to show that ethylene production decreases substantially with time and that a sufficiently prolonged reaction time (up to 20 h) leads only to H₂ evolution with ethylene production ∼1,000 times slower, in agreement with theory. This result shows that maintaining substantial subsurface oxygen is essential for long-term C₂ production with Cu catalysts.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Ethylene</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Oxygen</subject><subject>Physical Sciences</subject><subject>Reaction time</subject><subject>Reduction</subject><subject>Time dependence</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK2ePQkLXrykzn5kN3sRpKgVCr3oOWySiaakSdzNCr36U_0lrlQEhYH5eniZeQk5ZzBnoMX10Fk_58C4koax7IBMGRiWxA4OyRSA6ySTXE7IifcbADBpBsdkIiRkQgo-JavF-vPjgzqsQjk2fUdjDMEhXQQ6uD5O0cdZu6PLb87WIzrqQ-GDq22JdE0bTyscWhyxOiVHtW09nv3kGXm-v3taLJPV-uFxcbtKNtyIMamRFUYVUrLamIrVGfJYA691URtmFKAtrdKorAYuCiErzVIQphDIUqaEmJGbve4Qii1WJXajs20-uGZr3S7vbZP_3XTNa_7Sv-dZtEorEwWufgRc_xbQj_m28SW2re2wDz7nqdBK6pTpiF7-Qzd9cF18L1IS0hSij5G62FMbP_bu9xKuITqtmPgC7KaAdw</recordid><startdate>20210608</startdate><enddate>20210608</enddate><creator>Liu, Guiji</creator><creator>Lee, Michelle</creator><creator>Kwon, Soonho</creator><creator>Zeng, Guosong</creator><creator>Eichhorn, Johanna</creator><creator>Buckley, Aya K.</creator><creator>Toste, F. Dean</creator><creator>Goddard, William A.</creator><creator>Toma, Francesca M.</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210608</creationdate><title>CO₂ reduction on pure Cu produces only H₂ after subsurface O is depleted</title><author>Liu, Guiji ; Lee, Michelle ; Kwon, Soonho ; Zeng, Guosong ; Eichhorn, Johanna ; Buckley, Aya K. ; Toste, F. Dean ; Goddard, William A. ; Toma, Francesca M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j293t-fe1b96b441f99d1f8e244102f7bf91960eaca67e6a7023b34d715039b3e151633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Ethylene</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Oxygen</topic><topic>Physical Sciences</topic><topic>Reaction time</topic><topic>Reduction</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guiji</creatorcontrib><creatorcontrib>Lee, Michelle</creatorcontrib><creatorcontrib>Kwon, Soonho</creatorcontrib><creatorcontrib>Zeng, Guosong</creatorcontrib><creatorcontrib>Eichhorn, Johanna</creatorcontrib><creatorcontrib>Buckley, Aya K.</creatorcontrib><creatorcontrib>Toste, F. Dean</creatorcontrib><creatorcontrib>Goddard, William A.</creatorcontrib><creatorcontrib>Toma, Francesca M.</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guiji</au><au>Lee, Michelle</au><au>Kwon, Soonho</au><au>Zeng, Guosong</au><au>Eichhorn, Johanna</au><au>Buckley, Aya K.</au><au>Toste, F. Dean</au><au>Goddard, William A.</au><au>Toma, Francesca M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO₂ reduction on pure Cu produces only H₂ after subsurface O is depleted: Theory and experiment</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2021-06-08</date><risdate>2021</risdate><volume>118</volume><issue>23</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We elucidate the role of subsurface oxygen on the production of C₂ products from CO₂ reduction over Cu electrocatalysts using the newly developed grand canonical potential kinetics density functional theory method, which predicts that the rate of C₂ production on pure Cu with no O is ∼500 times slower than H₂ evolution. In contrast, starting with Cu₂O, the rate of C₂ production is &gt;5,000 times faster than pure Cu(111) and comparable to H₂ production. To validate these predictions experimentally, we combined time-dependent product detection with multiple characterization techniques to show that ethylene production decreases substantially with time and that a sufficiently prolonged reaction time (up to 20 h) leads only to H₂ evolution with ethylene production ∼1,000 times slower, in agreement with theory. This result shows that maintaining substantial subsurface oxygen is essential for long-term C₂ production with Cu catalysts.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>34083432</pmid><doi>10.1073/pnas.2012649118</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (23), p.1-8
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8201769
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Carbon dioxide
Catalysts
Copper
Density functional theory
Electrocatalysts
Ethylene
Hydrogen evolution
Hydrogen production
Oxygen
Physical Sciences
Reaction time
Reduction
Time dependence
title CO₂ reduction on pure Cu produces only H₂ after subsurface O is depleted: Theory and experiment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO%E2%82%82%20reduction%20on%20pure%20Cu%20produces%20only%20H%E2%82%82%20after%20subsurface%20O%20is%20depleted:%20Theory%20and%20experiment&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liu,%20Guiji&rft.date=2021-06-08&rft.volume=118&rft.issue=23&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2012649118&rft_dat=%3Cjstor_pubme%3E27040861%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j293t-fe1b96b441f99d1f8e244102f7bf91960eaca67e6a7023b34d715039b3e151633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2540550432&rft_id=info:pmid/34083432&rft_jstor_id=27040861&rfr_iscdi=true