Loading…
Illustrating potential effects of alternate control populations on real-world evidence-based statistical analyses
Objective Case–control study designs are commonly used in retrospective analyses of real-world evidence (RWE). Due to the increasingly wide availability of RWE, it can be difficult to determine whether findings are robust or the result of testing multiple hypotheses. Materials and Methods We investi...
Saved in:
Published in: | JAMIA open 2021-04, Vol.4 (2), p.ooab045-ooab045 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c503t-7d32561d9178d9db8537974dc824d8399561c8b5862c66bac8b257c8ef6586823 |
---|---|
cites | cdi_FETCH-LOGICAL-c503t-7d32561d9178d9db8537974dc824d8399561c8b5862c66bac8b257c8ef6586823 |
container_end_page | ooab045 |
container_issue | 2 |
container_start_page | ooab045 |
container_title | JAMIA open |
container_volume | 4 |
creator | Huang, Yidi Yuan, William Kohane, Isaac S Beaulieu-Jones, Brett K |
description | Objective
Case–control study designs are commonly used in retrospective analyses of real-world evidence (RWE). Due to the increasingly wide availability of RWE, it can be difficult to determine whether findings are robust or the result of testing multiple hypotheses.
Materials and Methods
We investigate the potential effects of modifying cohort definitions in a case–control association study between depression and type 2 diabetes mellitus. We used a large (>75 million individuals) de-identified administrative claims database to observe the effects of minor changes to the requirements of glucose and hemoglobin A1c tests in the control group.
Results
We found that small permutations to the criteria used to define the control population result in significant shifts in both the demographic structure of the identified cohort as well as the odds ratio of association. These differences remain present when testing against age- and sex-matched controls.
Discussion
Analyses of RWE need to be carefully designed to avoid issues of multiple testing. Minor changes to control cohorts can lead to significantly different results and have the potential to alter even prospective studies through selection bias.
Conclusion
We believe this work offers strong support for the need for robust guidelines, best practices, and regulations around the use of observational RWE for clinical or regulatory decision-making. |
doi_str_mv | 10.1093/jamiaopen/ooab045 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8206406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779048977</galeid><oup_id>10.1093/jamiaopen/ooab045</oup_id><sourcerecordid>A779048977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-7d32561d9178d9db8537974dc824d8399561c8b5862c66bac8b257c8ef6586823</originalsourceid><addsrcrecordid>eNqNks9rFTEQxxdRbKn9A7zIghcPbptfu5tchFK0LRS86Dlkk9lnSl6yTbKV_vdOec9HCx4khwwzn--XmWSa5j0lZ5Qofn5ntt6kBeJ5SmYion_VHLN-FB3rOX39LD5qTku5I4RQpdTAydvmiAsqGKHyuLm_CWEtNZvq46ZdUoVYvQktzDPYWto0tyZUyNFUaG2KNaeA2LIGVKSIQGwzmND9Tjm4Fh68g2ihm0wB15aKVKneoqOJJjwWKO-aN7MJBU7390nz89vXH5fX3e33q5vLi9vO9oTXbnSc9QN1io7SKTfJno9qFM5KJpzkSmHRyqmXA7PDMBmMcWIrYR4wJxk_ab7sfJd12oKzOFg2QS_Zb01-1Ml4_bIS_S-9SQ9aMjIIMqDBp71BTvcrlKq3vlgIwURIa9GsF1wIoRhB9OMO3ZgA2sc5oaN9wvXFOCoipBpHpM7-QeFxsPX4tjB7zL8Q0J3A5lRKhvnQPSX6aQn0YQn0fglQ8-H52AfF3y9H4PMOSOvyH35_AH98wlM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543444920</pqid></control><display><type>article</type><title>Illustrating potential effects of alternate control populations on real-world evidence-based statistical analyses</title><source>Oxford Open</source><source>PubMed Central</source><creator>Huang, Yidi ; Yuan, William ; Kohane, Isaac S ; Beaulieu-Jones, Brett K</creator><creatorcontrib>Huang, Yidi ; Yuan, William ; Kohane, Isaac S ; Beaulieu-Jones, Brett K</creatorcontrib><description>Objective
Case–control study designs are commonly used in retrospective analyses of real-world evidence (RWE). Due to the increasingly wide availability of RWE, it can be difficult to determine whether findings are robust or the result of testing multiple hypotheses.
Materials and Methods
We investigate the potential effects of modifying cohort definitions in a case–control association study between depression and type 2 diabetes mellitus. We used a large (>75 million individuals) de-identified administrative claims database to observe the effects of minor changes to the requirements of glucose and hemoglobin A1c tests in the control group.
Results
We found that small permutations to the criteria used to define the control population result in significant shifts in both the demographic structure of the identified cohort as well as the odds ratio of association. These differences remain present when testing against age- and sex-matched controls.
Discussion
Analyses of RWE need to be carefully designed to avoid issues of multiple testing. Minor changes to control cohorts can lead to significantly different results and have the potential to alter even prospective studies through selection bias.
Conclusion
We believe this work offers strong support for the need for robust guidelines, best practices, and regulations around the use of observational RWE for clinical or regulatory decision-making.</description><identifier>ISSN: 2574-2531</identifier><identifier>EISSN: 2574-2531</identifier><identifier>DOI: 10.1093/jamiaopen/ooab045</identifier><identifier>PMID: 34142018</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Analysis ; Decision-making ; Dextrose ; Diabetes therapy ; Glucose ; Glycosylated hemoglobin ; Research and Applications ; Type 2 diabetes</subject><ispartof>JAMIA open, 2021-04, Vol.4 (2), p.ooab045-ooab045</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association.</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-7d32561d9178d9db8537974dc824d8399561c8b5862c66bac8b257c8ef6586823</citedby><cites>FETCH-LOGICAL-c503t-7d32561d9178d9db8537974dc824d8399561c8b5862c66bac8b257c8ef6586823</cites><orcidid>0000-0003-4662-8664 ; 0000-0002-6700-1468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206406/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206406/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34142018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Yidi</creatorcontrib><creatorcontrib>Yuan, William</creatorcontrib><creatorcontrib>Kohane, Isaac S</creatorcontrib><creatorcontrib>Beaulieu-Jones, Brett K</creatorcontrib><title>Illustrating potential effects of alternate control populations on real-world evidence-based statistical analyses</title><title>JAMIA open</title><addtitle>JAMIA Open</addtitle><description>Objective
Case–control study designs are commonly used in retrospective analyses of real-world evidence (RWE). Due to the increasingly wide availability of RWE, it can be difficult to determine whether findings are robust or the result of testing multiple hypotheses.
Materials and Methods
We investigate the potential effects of modifying cohort definitions in a case–control association study between depression and type 2 diabetes mellitus. We used a large (>75 million individuals) de-identified administrative claims database to observe the effects of minor changes to the requirements of glucose and hemoglobin A1c tests in the control group.
Results
We found that small permutations to the criteria used to define the control population result in significant shifts in both the demographic structure of the identified cohort as well as the odds ratio of association. These differences remain present when testing against age- and sex-matched controls.
Discussion
Analyses of RWE need to be carefully designed to avoid issues of multiple testing. Minor changes to control cohorts can lead to significantly different results and have the potential to alter even prospective studies through selection bias.
Conclusion
We believe this work offers strong support for the need for robust guidelines, best practices, and regulations around the use of observational RWE for clinical or regulatory decision-making.</description><subject>Analysis</subject><subject>Decision-making</subject><subject>Dextrose</subject><subject>Diabetes therapy</subject><subject>Glucose</subject><subject>Glycosylated hemoglobin</subject><subject>Research and Applications</subject><subject>Type 2 diabetes</subject><issn>2574-2531</issn><issn>2574-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNks9rFTEQxxdRbKn9A7zIghcPbptfu5tchFK0LRS86Dlkk9lnSl6yTbKV_vdOec9HCx4khwwzn--XmWSa5j0lZ5Qofn5ntt6kBeJ5SmYion_VHLN-FB3rOX39LD5qTku5I4RQpdTAydvmiAsqGKHyuLm_CWEtNZvq46ZdUoVYvQktzDPYWto0tyZUyNFUaG2KNaeA2LIGVKSIQGwzmND9Tjm4Fh68g2ihm0wB15aKVKneoqOJJjwWKO-aN7MJBU7390nz89vXH5fX3e33q5vLi9vO9oTXbnSc9QN1io7SKTfJno9qFM5KJpzkSmHRyqmXA7PDMBmMcWIrYR4wJxk_ab7sfJd12oKzOFg2QS_Zb01-1Ml4_bIS_S-9SQ9aMjIIMqDBp71BTvcrlKq3vlgIwURIa9GsF1wIoRhB9OMO3ZgA2sc5oaN9wvXFOCoipBpHpM7-QeFxsPX4tjB7zL8Q0J3A5lRKhvnQPSX6aQn0YQn0fglQ8-H52AfF3y9H4PMOSOvyH35_AH98wlM</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Huang, Yidi</creator><creator>Yuan, William</creator><creator>Kohane, Isaac S</creator><creator>Beaulieu-Jones, Brett K</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4662-8664</orcidid><orcidid>https://orcid.org/0000-0002-6700-1468</orcidid></search><sort><creationdate>20210401</creationdate><title>Illustrating potential effects of alternate control populations on real-world evidence-based statistical analyses</title><author>Huang, Yidi ; Yuan, William ; Kohane, Isaac S ; Beaulieu-Jones, Brett K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-7d32561d9178d9db8537974dc824d8399561c8b5862c66bac8b257c8ef6586823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Decision-making</topic><topic>Dextrose</topic><topic>Diabetes therapy</topic><topic>Glucose</topic><topic>Glycosylated hemoglobin</topic><topic>Research and Applications</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yidi</creatorcontrib><creatorcontrib>Yuan, William</creatorcontrib><creatorcontrib>Kohane, Isaac S</creatorcontrib><creatorcontrib>Beaulieu-Jones, Brett K</creatorcontrib><collection>Oxford Open</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JAMIA open</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yidi</au><au>Yuan, William</au><au>Kohane, Isaac S</au><au>Beaulieu-Jones, Brett K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Illustrating potential effects of alternate control populations on real-world evidence-based statistical analyses</atitle><jtitle>JAMIA open</jtitle><addtitle>JAMIA Open</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>4</volume><issue>2</issue><spage>ooab045</spage><epage>ooab045</epage><pages>ooab045-ooab045</pages><issn>2574-2531</issn><eissn>2574-2531</eissn><abstract>Objective
Case–control study designs are commonly used in retrospective analyses of real-world evidence (RWE). Due to the increasingly wide availability of RWE, it can be difficult to determine whether findings are robust or the result of testing multiple hypotheses.
Materials and Methods
We investigate the potential effects of modifying cohort definitions in a case–control association study between depression and type 2 diabetes mellitus. We used a large (>75 million individuals) de-identified administrative claims database to observe the effects of minor changes to the requirements of glucose and hemoglobin A1c tests in the control group.
Results
We found that small permutations to the criteria used to define the control population result in significant shifts in both the demographic structure of the identified cohort as well as the odds ratio of association. These differences remain present when testing against age- and sex-matched controls.
Discussion
Analyses of RWE need to be carefully designed to avoid issues of multiple testing. Minor changes to control cohorts can lead to significantly different results and have the potential to alter even prospective studies through selection bias.
Conclusion
We believe this work offers strong support for the need for robust guidelines, best practices, and regulations around the use of observational RWE for clinical or regulatory decision-making.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>34142018</pmid><doi>10.1093/jamiaopen/ooab045</doi><orcidid>https://orcid.org/0000-0003-4662-8664</orcidid><orcidid>https://orcid.org/0000-0002-6700-1468</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-2531 |
ispartof | JAMIA open, 2021-04, Vol.4 (2), p.ooab045-ooab045 |
issn | 2574-2531 2574-2531 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8206406 |
source | Oxford Open; PubMed Central |
subjects | Analysis Decision-making Dextrose Diabetes therapy Glucose Glycosylated hemoglobin Research and Applications Type 2 diabetes |
title | Illustrating potential effects of alternate control populations on real-world evidence-based statistical analyses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Illustrating%20potential%20effects%20of%20alternate%20control%20populations%20on%20real-world%20evidence-based%20statistical%20analyses&rft.jtitle=JAMIA%20open&rft.au=Huang,%20Yidi&rft.date=2021-04-01&rft.volume=4&rft.issue=2&rft.spage=ooab045&rft.epage=ooab045&rft.pages=ooab045-ooab045&rft.issn=2574-2531&rft.eissn=2574-2531&rft_id=info:doi/10.1093/jamiaopen/ooab045&rft_dat=%3Cgale_pubme%3EA779048977%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-7d32561d9178d9db8537974dc824d8399561c8b5862c66bac8b257c8ef6586823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2543444920&rft_id=info:pmid/34142018&rft_galeid=A779048977&rft_oup_id=10.1093/jamiaopen/ooab045&rfr_iscdi=true |