Loading…

Illustrating potential effects of alternate control populations on real-world evidence-based statistical analyses

Objective Case–control study designs are commonly used in retrospective analyses of real-world evidence (RWE). Due to the increasingly wide availability of RWE, it can be difficult to determine whether findings are robust or the result of testing multiple hypotheses. Materials and Methods We investi...

Full description

Saved in:
Bibliographic Details
Published in:JAMIA open 2021-04, Vol.4 (2), p.ooab045-ooab045
Main Authors: Huang, Yidi, Yuan, William, Kohane, Isaac S, Beaulieu-Jones, Brett K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c503t-7d32561d9178d9db8537974dc824d8399561c8b5862c66bac8b257c8ef6586823
cites cdi_FETCH-LOGICAL-c503t-7d32561d9178d9db8537974dc824d8399561c8b5862c66bac8b257c8ef6586823
container_end_page ooab045
container_issue 2
container_start_page ooab045
container_title JAMIA open
container_volume 4
creator Huang, Yidi
Yuan, William
Kohane, Isaac S
Beaulieu-Jones, Brett K
description Objective Case–control study designs are commonly used in retrospective analyses of real-world evidence (RWE). Due to the increasingly wide availability of RWE, it can be difficult to determine whether findings are robust or the result of testing multiple hypotheses. Materials and Methods We investigate the potential effects of modifying cohort definitions in a case–control association study between depression and type 2 diabetes mellitus. We used a large (>75 million individuals) de-identified administrative claims database to observe the effects of minor changes to the requirements of glucose and hemoglobin A1c tests in the control group. Results We found that small permutations to the criteria used to define the control population result in significant shifts in both the demographic structure of the identified cohort as well as the odds ratio of association. These differences remain present when testing against age- and sex-matched controls. Discussion Analyses of RWE need to be carefully designed to avoid issues of multiple testing. Minor changes to control cohorts can lead to significantly different results and have the potential to alter even prospective studies through selection bias. Conclusion We believe this work offers strong support for the need for robust guidelines, best practices, and regulations around the use of observational RWE for clinical or regulatory decision-making.
doi_str_mv 10.1093/jamiaopen/ooab045
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8206406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779048977</galeid><oup_id>10.1093/jamiaopen/ooab045</oup_id><sourcerecordid>A779048977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-7d32561d9178d9db8537974dc824d8399561c8b5862c66bac8b257c8ef6586823</originalsourceid><addsrcrecordid>eNqNks9rFTEQxxdRbKn9A7zIghcPbptfu5tchFK0LRS86Dlkk9lnSl6yTbKV_vdOec9HCx4khwwzn--XmWSa5j0lZ5Qofn5ntt6kBeJ5SmYion_VHLN-FB3rOX39LD5qTku5I4RQpdTAydvmiAsqGKHyuLm_CWEtNZvq46ZdUoVYvQktzDPYWto0tyZUyNFUaG2KNaeA2LIGVKSIQGwzmND9Tjm4Fh68g2ihm0wB15aKVKneoqOJJjwWKO-aN7MJBU7390nz89vXH5fX3e33q5vLi9vO9oTXbnSc9QN1io7SKTfJno9qFM5KJpzkSmHRyqmXA7PDMBmMcWIrYR4wJxk_ab7sfJd12oKzOFg2QS_Zb01-1Ml4_bIS_S-9SQ9aMjIIMqDBp71BTvcrlKq3vlgIwURIa9GsF1wIoRhB9OMO3ZgA2sc5oaN9wvXFOCoipBpHpM7-QeFxsPX4tjB7zL8Q0J3A5lRKhvnQPSX6aQn0YQn0fglQ8-H52AfF3y9H4PMOSOvyH35_AH98wlM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543444920</pqid></control><display><type>article</type><title>Illustrating potential effects of alternate control populations on real-world evidence-based statistical analyses</title><source>Oxford Open</source><source>PubMed Central</source><creator>Huang, Yidi ; Yuan, William ; Kohane, Isaac S ; Beaulieu-Jones, Brett K</creator><creatorcontrib>Huang, Yidi ; Yuan, William ; Kohane, Isaac S ; Beaulieu-Jones, Brett K</creatorcontrib><description>Objective Case–control study designs are commonly used in retrospective analyses of real-world evidence (RWE). Due to the increasingly wide availability of RWE, it can be difficult to determine whether findings are robust or the result of testing multiple hypotheses. Materials and Methods We investigate the potential effects of modifying cohort definitions in a case–control association study between depression and type 2 diabetes mellitus. We used a large (&gt;75 million individuals) de-identified administrative claims database to observe the effects of minor changes to the requirements of glucose and hemoglobin A1c tests in the control group. Results We found that small permutations to the criteria used to define the control population result in significant shifts in both the demographic structure of the identified cohort as well as the odds ratio of association. These differences remain present when testing against age- and sex-matched controls. Discussion Analyses of RWE need to be carefully designed to avoid issues of multiple testing. Minor changes to control cohorts can lead to significantly different results and have the potential to alter even prospective studies through selection bias. Conclusion We believe this work offers strong support for the need for robust guidelines, best practices, and regulations around the use of observational RWE for clinical or regulatory decision-making.</description><identifier>ISSN: 2574-2531</identifier><identifier>EISSN: 2574-2531</identifier><identifier>DOI: 10.1093/jamiaopen/ooab045</identifier><identifier>PMID: 34142018</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Analysis ; Decision-making ; Dextrose ; Diabetes therapy ; Glucose ; Glycosylated hemoglobin ; Research and Applications ; Type 2 diabetes</subject><ispartof>JAMIA open, 2021-04, Vol.4 (2), p.ooab045-ooab045</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association.</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-7d32561d9178d9db8537974dc824d8399561c8b5862c66bac8b257c8ef6586823</citedby><cites>FETCH-LOGICAL-c503t-7d32561d9178d9db8537974dc824d8399561c8b5862c66bac8b257c8ef6586823</cites><orcidid>0000-0003-4662-8664 ; 0000-0002-6700-1468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206406/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206406/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34142018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Yidi</creatorcontrib><creatorcontrib>Yuan, William</creatorcontrib><creatorcontrib>Kohane, Isaac S</creatorcontrib><creatorcontrib>Beaulieu-Jones, Brett K</creatorcontrib><title>Illustrating potential effects of alternate control populations on real-world evidence-based statistical analyses</title><title>JAMIA open</title><addtitle>JAMIA Open</addtitle><description>Objective Case–control study designs are commonly used in retrospective analyses of real-world evidence (RWE). Due to the increasingly wide availability of RWE, it can be difficult to determine whether findings are robust or the result of testing multiple hypotheses. Materials and Methods We investigate the potential effects of modifying cohort definitions in a case–control association study between depression and type 2 diabetes mellitus. We used a large (&gt;75 million individuals) de-identified administrative claims database to observe the effects of minor changes to the requirements of glucose and hemoglobin A1c tests in the control group. Results We found that small permutations to the criteria used to define the control population result in significant shifts in both the demographic structure of the identified cohort as well as the odds ratio of association. These differences remain present when testing against age- and sex-matched controls. Discussion Analyses of RWE need to be carefully designed to avoid issues of multiple testing. Minor changes to control cohorts can lead to significantly different results and have the potential to alter even prospective studies through selection bias. Conclusion We believe this work offers strong support for the need for robust guidelines, best practices, and regulations around the use of observational RWE for clinical or regulatory decision-making.</description><subject>Analysis</subject><subject>Decision-making</subject><subject>Dextrose</subject><subject>Diabetes therapy</subject><subject>Glucose</subject><subject>Glycosylated hemoglobin</subject><subject>Research and Applications</subject><subject>Type 2 diabetes</subject><issn>2574-2531</issn><issn>2574-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNks9rFTEQxxdRbKn9A7zIghcPbptfu5tchFK0LRS86Dlkk9lnSl6yTbKV_vdOec9HCx4khwwzn--XmWSa5j0lZ5Qofn5ntt6kBeJ5SmYion_VHLN-FB3rOX39LD5qTku5I4RQpdTAydvmiAsqGKHyuLm_CWEtNZvq46ZdUoVYvQktzDPYWto0tyZUyNFUaG2KNaeA2LIGVKSIQGwzmND9Tjm4Fh68g2ihm0wB15aKVKneoqOJJjwWKO-aN7MJBU7390nz89vXH5fX3e33q5vLi9vO9oTXbnSc9QN1io7SKTfJno9qFM5KJpzkSmHRyqmXA7PDMBmMcWIrYR4wJxk_ab7sfJd12oKzOFg2QS_Zb01-1Ml4_bIS_S-9SQ9aMjIIMqDBp71BTvcrlKq3vlgIwURIa9GsF1wIoRhB9OMO3ZgA2sc5oaN9wvXFOCoipBpHpM7-QeFxsPX4tjB7zL8Q0J3A5lRKhvnQPSX6aQn0YQn0fglQ8-H52AfF3y9H4PMOSOvyH35_AH98wlM</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Huang, Yidi</creator><creator>Yuan, William</creator><creator>Kohane, Isaac S</creator><creator>Beaulieu-Jones, Brett K</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4662-8664</orcidid><orcidid>https://orcid.org/0000-0002-6700-1468</orcidid></search><sort><creationdate>20210401</creationdate><title>Illustrating potential effects of alternate control populations on real-world evidence-based statistical analyses</title><author>Huang, Yidi ; Yuan, William ; Kohane, Isaac S ; Beaulieu-Jones, Brett K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-7d32561d9178d9db8537974dc824d8399561c8b5862c66bac8b257c8ef6586823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Decision-making</topic><topic>Dextrose</topic><topic>Diabetes therapy</topic><topic>Glucose</topic><topic>Glycosylated hemoglobin</topic><topic>Research and Applications</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yidi</creatorcontrib><creatorcontrib>Yuan, William</creatorcontrib><creatorcontrib>Kohane, Isaac S</creatorcontrib><creatorcontrib>Beaulieu-Jones, Brett K</creatorcontrib><collection>Oxford Open</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JAMIA open</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yidi</au><au>Yuan, William</au><au>Kohane, Isaac S</au><au>Beaulieu-Jones, Brett K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Illustrating potential effects of alternate control populations on real-world evidence-based statistical analyses</atitle><jtitle>JAMIA open</jtitle><addtitle>JAMIA Open</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>4</volume><issue>2</issue><spage>ooab045</spage><epage>ooab045</epage><pages>ooab045-ooab045</pages><issn>2574-2531</issn><eissn>2574-2531</eissn><abstract>Objective Case–control study designs are commonly used in retrospective analyses of real-world evidence (RWE). Due to the increasingly wide availability of RWE, it can be difficult to determine whether findings are robust or the result of testing multiple hypotheses. Materials and Methods We investigate the potential effects of modifying cohort definitions in a case–control association study between depression and type 2 diabetes mellitus. We used a large (&gt;75 million individuals) de-identified administrative claims database to observe the effects of minor changes to the requirements of glucose and hemoglobin A1c tests in the control group. Results We found that small permutations to the criteria used to define the control population result in significant shifts in both the demographic structure of the identified cohort as well as the odds ratio of association. These differences remain present when testing against age- and sex-matched controls. Discussion Analyses of RWE need to be carefully designed to avoid issues of multiple testing. Minor changes to control cohorts can lead to significantly different results and have the potential to alter even prospective studies through selection bias. Conclusion We believe this work offers strong support for the need for robust guidelines, best practices, and regulations around the use of observational RWE for clinical or regulatory decision-making.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>34142018</pmid><doi>10.1093/jamiaopen/ooab045</doi><orcidid>https://orcid.org/0000-0003-4662-8664</orcidid><orcidid>https://orcid.org/0000-0002-6700-1468</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-2531
ispartof JAMIA open, 2021-04, Vol.4 (2), p.ooab045-ooab045
issn 2574-2531
2574-2531
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8206406
source Oxford Open; PubMed Central
subjects Analysis
Decision-making
Dextrose
Diabetes therapy
Glucose
Glycosylated hemoglobin
Research and Applications
Type 2 diabetes
title Illustrating potential effects of alternate control populations on real-world evidence-based statistical analyses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Illustrating%20potential%20effects%20of%20alternate%20control%20populations%20on%20real-world%20evidence-based%20statistical%20analyses&rft.jtitle=JAMIA%20open&rft.au=Huang,%20Yidi&rft.date=2021-04-01&rft.volume=4&rft.issue=2&rft.spage=ooab045&rft.epage=ooab045&rft.pages=ooab045-ooab045&rft.issn=2574-2531&rft.eissn=2574-2531&rft_id=info:doi/10.1093/jamiaopen/ooab045&rft_dat=%3Cgale_pubme%3EA779048977%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-7d32561d9178d9db8537974dc824d8399561c8b5862c66bac8b257c8ef6586823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2543444920&rft_id=info:pmid/34142018&rft_galeid=A779048977&rft_oup_id=10.1093/jamiaopen/ooab045&rfr_iscdi=true