Loading…
Multi-Scale Organization of the Drosophila melanogaster Genome
Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptio...
Saved in:
Published in: | Genes 2021-05, Vol.12 (6), p.817 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-1ba957641ca207ed174b2f8fd3f797614b5e2c685692e089752f41275eaae4363 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-1ba957641ca207ed174b2f8fd3f797614b5e2c685692e089752f41275eaae4363 |
container_end_page | |
container_issue | 6 |
container_start_page | 817 |
container_title | Genes |
container_volume | 12 |
creator | Peterson, Samantha C. Samuelson, Kaylah B. Hanlon, Stacey L. |
description | Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptional because homologous chromosome pairing is in both germline and somatic tissues, which promote interhomolog interactions such as transvection that can affect gene expression in trans. In this review, we focus on what is known about genome organization in Drosophila and discuss it from TADs to territory. We start by examining intrachromosomal organization at the sub-chromosome level into TADs, followed by a comprehensive analysis of the known proteins that play a key role in TAD formation and boundary establishment. We then zoom out to examine interhomolog interactions such as pairing and transvection that are abundant in Drosophila but rare in other model systems. Finally, we discuss chromosome territories that form within the nucleus, resulting in a complete picture of the multi-scale organization of the Drosophila genome. |
doi_str_mv | 10.3390/genes12060817 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8228293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544821359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-1ba957641ca207ed174b2f8fd3f797614b5e2c685692e089752f41275eaae4363</originalsourceid><addsrcrecordid>eNpdkc1Lw0AQxRdRbKk9eg948RLd781eClK1CpUe1POySSdpSpKtu4mgf70rLaLOZQbmx2PePITOCb5iTOPrCjoIhGKJM6KO0JhixVLOqTj-NY_QNIQtjsUxxVicohHjWBGV6TGaPQ1NX6fPhW0gWfnKdvWn7WvXJa5M-g0kt94Ft9vUjU1aaGznKht68MkCOtfCGTopbRNgeugT9Hp_9zJ_SJerxeP8ZpkWTNM-JbnVQklOChvPgjVRPKdlVq5ZqbSShOcCaCEzITUFnGklaMkJVQKsBc4km6DZXnc35C2sC-h6bxuz83Vr_YdxtjZ_N129MZV7NxmlGdUsClweBLx7GyD0pq1DAU10BG4IhgomuZSCk4he_EO3bvBdtBcpzjNKmNCRSvdUER8UPJQ_xxBsvsMxf8JhX3g6gCo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544821359</pqid></control><display><type>article</type><title>Multi-Scale Organization of the Drosophila melanogaster Genome</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Peterson, Samantha C. ; Samuelson, Kaylah B. ; Hanlon, Stacey L.</creator><creatorcontrib>Peterson, Samantha C. ; Samuelson, Kaylah B. ; Hanlon, Stacey L.</creatorcontrib><description>Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptional because homologous chromosome pairing is in both germline and somatic tissues, which promote interhomolog interactions such as transvection that can affect gene expression in trans. In this review, we focus on what is known about genome organization in Drosophila and discuss it from TADs to territory. We start by examining intrachromosomal organization at the sub-chromosome level into TADs, followed by a comprehensive analysis of the known proteins that play a key role in TAD formation and boundary establishment. We then zoom out to examine interhomolog interactions such as pairing and transvection that are abundant in Drosophila but rare in other model systems. Finally, we discuss chromosome territories that form within the nucleus, resulting in a complete picture of the multi-scale organization of the Drosophila genome.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes12060817</identifier><identifier>PMID: 34071789</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cell cycle ; Cell division ; Chromatin ; Chromosomes ; DNA methylation ; Drosophila ; Embryos ; Gene expression ; Genomes ; Insects ; Proteins ; Review ; RNA polymerase ; Territory</subject><ispartof>Genes, 2021-05, Vol.12 (6), p.817</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-1ba957641ca207ed174b2f8fd3f797614b5e2c685692e089752f41275eaae4363</citedby><cites>FETCH-LOGICAL-c392t-1ba957641ca207ed174b2f8fd3f797614b5e2c685692e089752f41275eaae4363</cites><orcidid>0000-0002-7682-5311 ; 0000-0002-1963-8616 ; 0000-0002-2915-1350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544821359/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544821359?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Peterson, Samantha C.</creatorcontrib><creatorcontrib>Samuelson, Kaylah B.</creatorcontrib><creatorcontrib>Hanlon, Stacey L.</creatorcontrib><title>Multi-Scale Organization of the Drosophila melanogaster Genome</title><title>Genes</title><description>Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptional because homologous chromosome pairing is in both germline and somatic tissues, which promote interhomolog interactions such as transvection that can affect gene expression in trans. In this review, we focus on what is known about genome organization in Drosophila and discuss it from TADs to territory. We start by examining intrachromosomal organization at the sub-chromosome level into TADs, followed by a comprehensive analysis of the known proteins that play a key role in TAD formation and boundary establishment. We then zoom out to examine interhomolog interactions such as pairing and transvection that are abundant in Drosophila but rare in other model systems. Finally, we discuss chromosome territories that form within the nucleus, resulting in a complete picture of the multi-scale organization of the Drosophila genome.</description><subject>Cell cycle</subject><subject>Cell division</subject><subject>Chromatin</subject><subject>Chromosomes</subject><subject>DNA methylation</subject><subject>Drosophila</subject><subject>Embryos</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Insects</subject><subject>Proteins</subject><subject>Review</subject><subject>RNA polymerase</subject><subject>Territory</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1Lw0AQxRdRbKk9eg948RLd781eClK1CpUe1POySSdpSpKtu4mgf70rLaLOZQbmx2PePITOCb5iTOPrCjoIhGKJM6KO0JhixVLOqTj-NY_QNIQtjsUxxVicohHjWBGV6TGaPQ1NX6fPhW0gWfnKdvWn7WvXJa5M-g0kt94Ft9vUjU1aaGznKht68MkCOtfCGTopbRNgeugT9Hp_9zJ_SJerxeP8ZpkWTNM-JbnVQklOChvPgjVRPKdlVq5ZqbSShOcCaCEzITUFnGklaMkJVQKsBc4km6DZXnc35C2sC-h6bxuz83Vr_YdxtjZ_N129MZV7NxmlGdUsClweBLx7GyD0pq1DAU10BG4IhgomuZSCk4he_EO3bvBdtBcpzjNKmNCRSvdUER8UPJQ_xxBsvsMxf8JhX3g6gCo</recordid><startdate>20210527</startdate><enddate>20210527</enddate><creator>Peterson, Samantha C.</creator><creator>Samuelson, Kaylah B.</creator><creator>Hanlon, Stacey L.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7682-5311</orcidid><orcidid>https://orcid.org/0000-0002-1963-8616</orcidid><orcidid>https://orcid.org/0000-0002-2915-1350</orcidid></search><sort><creationdate>20210527</creationdate><title>Multi-Scale Organization of the Drosophila melanogaster Genome</title><author>Peterson, Samantha C. ; Samuelson, Kaylah B. ; Hanlon, Stacey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-1ba957641ca207ed174b2f8fd3f797614b5e2c685692e089752f41275eaae4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell cycle</topic><topic>Cell division</topic><topic>Chromatin</topic><topic>Chromosomes</topic><topic>DNA methylation</topic><topic>Drosophila</topic><topic>Embryos</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Insects</topic><topic>Proteins</topic><topic>Review</topic><topic>RNA polymerase</topic><topic>Territory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peterson, Samantha C.</creatorcontrib><creatorcontrib>Samuelson, Kaylah B.</creatorcontrib><creatorcontrib>Hanlon, Stacey L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peterson, Samantha C.</au><au>Samuelson, Kaylah B.</au><au>Hanlon, Stacey L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Scale Organization of the Drosophila melanogaster Genome</atitle><jtitle>Genes</jtitle><date>2021-05-27</date><risdate>2021</risdate><volume>12</volume><issue>6</issue><spage>817</spage><pages>817-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptional because homologous chromosome pairing is in both germline and somatic tissues, which promote interhomolog interactions such as transvection that can affect gene expression in trans. In this review, we focus on what is known about genome organization in Drosophila and discuss it from TADs to territory. We start by examining intrachromosomal organization at the sub-chromosome level into TADs, followed by a comprehensive analysis of the known proteins that play a key role in TAD formation and boundary establishment. We then zoom out to examine interhomolog interactions such as pairing and transvection that are abundant in Drosophila but rare in other model systems. Finally, we discuss chromosome territories that form within the nucleus, resulting in a complete picture of the multi-scale organization of the Drosophila genome.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34071789</pmid><doi>10.3390/genes12060817</doi><orcidid>https://orcid.org/0000-0002-7682-5311</orcidid><orcidid>https://orcid.org/0000-0002-1963-8616</orcidid><orcidid>https://orcid.org/0000-0002-2915-1350</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4425 |
ispartof | Genes, 2021-05, Vol.12 (6), p.817 |
issn | 2073-4425 2073-4425 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8228293 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Cell cycle Cell division Chromatin Chromosomes DNA methylation Drosophila Embryos Gene expression Genomes Insects Proteins Review RNA polymerase Territory |
title | Multi-Scale Organization of the Drosophila melanogaster Genome |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Scale%20Organization%20of%20the%20Drosophila%20melanogaster%20Genome&rft.jtitle=Genes&rft.au=Peterson,%20Samantha%20C.&rft.date=2021-05-27&rft.volume=12&rft.issue=6&rft.spage=817&rft.pages=817-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes12060817&rft_dat=%3Cproquest_pubme%3E2544821359%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-1ba957641ca207ed174b2f8fd3f797614b5e2c685692e089752f41275eaae4363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544821359&rft_id=info:pmid/34071789&rfr_iscdi=true |