Loading…

Multi-Scale Organization of the Drosophila melanogaster Genome

Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptio...

Full description

Saved in:
Bibliographic Details
Published in:Genes 2021-05, Vol.12 (6), p.817
Main Authors: Peterson, Samantha C., Samuelson, Kaylah B., Hanlon, Stacey L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-1ba957641ca207ed174b2f8fd3f797614b5e2c685692e089752f41275eaae4363
cites cdi_FETCH-LOGICAL-c392t-1ba957641ca207ed174b2f8fd3f797614b5e2c685692e089752f41275eaae4363
container_end_page
container_issue 6
container_start_page 817
container_title Genes
container_volume 12
creator Peterson, Samantha C.
Samuelson, Kaylah B.
Hanlon, Stacey L.
description Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptional because homologous chromosome pairing is in both germline and somatic tissues, which promote interhomolog interactions such as transvection that can affect gene expression in trans. In this review, we focus on what is known about genome organization in Drosophila and discuss it from TADs to territory. We start by examining intrachromosomal organization at the sub-chromosome level into TADs, followed by a comprehensive analysis of the known proteins that play a key role in TAD formation and boundary establishment. We then zoom out to examine interhomolog interactions such as pairing and transvection that are abundant in Drosophila but rare in other model systems. Finally, we discuss chromosome territories that form within the nucleus, resulting in a complete picture of the multi-scale organization of the Drosophila genome.
doi_str_mv 10.3390/genes12060817
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8228293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544821359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-1ba957641ca207ed174b2f8fd3f797614b5e2c685692e089752f41275eaae4363</originalsourceid><addsrcrecordid>eNpdkc1Lw0AQxRdRbKk9eg948RLd781eClK1CpUe1POySSdpSpKtu4mgf70rLaLOZQbmx2PePITOCb5iTOPrCjoIhGKJM6KO0JhixVLOqTj-NY_QNIQtjsUxxVicohHjWBGV6TGaPQ1NX6fPhW0gWfnKdvWn7WvXJa5M-g0kt94Ft9vUjU1aaGznKht68MkCOtfCGTopbRNgeugT9Hp_9zJ_SJerxeP8ZpkWTNM-JbnVQklOChvPgjVRPKdlVq5ZqbSShOcCaCEzITUFnGklaMkJVQKsBc4km6DZXnc35C2sC-h6bxuz83Vr_YdxtjZ_N129MZV7NxmlGdUsClweBLx7GyD0pq1DAU10BG4IhgomuZSCk4he_EO3bvBdtBcpzjNKmNCRSvdUER8UPJQ_xxBsvsMxf8JhX3g6gCo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544821359</pqid></control><display><type>article</type><title>Multi-Scale Organization of the Drosophila melanogaster Genome</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Peterson, Samantha C. ; Samuelson, Kaylah B. ; Hanlon, Stacey L.</creator><creatorcontrib>Peterson, Samantha C. ; Samuelson, Kaylah B. ; Hanlon, Stacey L.</creatorcontrib><description>Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptional because homologous chromosome pairing is in both germline and somatic tissues, which promote interhomolog interactions such as transvection that can affect gene expression in trans. In this review, we focus on what is known about genome organization in Drosophila and discuss it from TADs to territory. We start by examining intrachromosomal organization at the sub-chromosome level into TADs, followed by a comprehensive analysis of the known proteins that play a key role in TAD formation and boundary establishment. We then zoom out to examine interhomolog interactions such as pairing and transvection that are abundant in Drosophila but rare in other model systems. Finally, we discuss chromosome territories that form within the nucleus, resulting in a complete picture of the multi-scale organization of the Drosophila genome.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes12060817</identifier><identifier>PMID: 34071789</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cell cycle ; Cell division ; Chromatin ; Chromosomes ; DNA methylation ; Drosophila ; Embryos ; Gene expression ; Genomes ; Insects ; Proteins ; Review ; RNA polymerase ; Territory</subject><ispartof>Genes, 2021-05, Vol.12 (6), p.817</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-1ba957641ca207ed174b2f8fd3f797614b5e2c685692e089752f41275eaae4363</citedby><cites>FETCH-LOGICAL-c392t-1ba957641ca207ed174b2f8fd3f797614b5e2c685692e089752f41275eaae4363</cites><orcidid>0000-0002-7682-5311 ; 0000-0002-1963-8616 ; 0000-0002-2915-1350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544821359/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544821359?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Peterson, Samantha C.</creatorcontrib><creatorcontrib>Samuelson, Kaylah B.</creatorcontrib><creatorcontrib>Hanlon, Stacey L.</creatorcontrib><title>Multi-Scale Organization of the Drosophila melanogaster Genome</title><title>Genes</title><description>Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptional because homologous chromosome pairing is in both germline and somatic tissues, which promote interhomolog interactions such as transvection that can affect gene expression in trans. In this review, we focus on what is known about genome organization in Drosophila and discuss it from TADs to territory. We start by examining intrachromosomal organization at the sub-chromosome level into TADs, followed by a comprehensive analysis of the known proteins that play a key role in TAD formation and boundary establishment. We then zoom out to examine interhomolog interactions such as pairing and transvection that are abundant in Drosophila but rare in other model systems. Finally, we discuss chromosome territories that form within the nucleus, resulting in a complete picture of the multi-scale organization of the Drosophila genome.</description><subject>Cell cycle</subject><subject>Cell division</subject><subject>Chromatin</subject><subject>Chromosomes</subject><subject>DNA methylation</subject><subject>Drosophila</subject><subject>Embryos</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Insects</subject><subject>Proteins</subject><subject>Review</subject><subject>RNA polymerase</subject><subject>Territory</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1Lw0AQxRdRbKk9eg948RLd781eClK1CpUe1POySSdpSpKtu4mgf70rLaLOZQbmx2PePITOCb5iTOPrCjoIhGKJM6KO0JhixVLOqTj-NY_QNIQtjsUxxVicohHjWBGV6TGaPQ1NX6fPhW0gWfnKdvWn7WvXJa5M-g0kt94Ft9vUjU1aaGznKht68MkCOtfCGTopbRNgeugT9Hp_9zJ_SJerxeP8ZpkWTNM-JbnVQklOChvPgjVRPKdlVq5ZqbSShOcCaCEzITUFnGklaMkJVQKsBc4km6DZXnc35C2sC-h6bxuz83Vr_YdxtjZ_N129MZV7NxmlGdUsClweBLx7GyD0pq1DAU10BG4IhgomuZSCk4he_EO3bvBdtBcpzjNKmNCRSvdUER8UPJQ_xxBsvsMxf8JhX3g6gCo</recordid><startdate>20210527</startdate><enddate>20210527</enddate><creator>Peterson, Samantha C.</creator><creator>Samuelson, Kaylah B.</creator><creator>Hanlon, Stacey L.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7682-5311</orcidid><orcidid>https://orcid.org/0000-0002-1963-8616</orcidid><orcidid>https://orcid.org/0000-0002-2915-1350</orcidid></search><sort><creationdate>20210527</creationdate><title>Multi-Scale Organization of the Drosophila melanogaster Genome</title><author>Peterson, Samantha C. ; Samuelson, Kaylah B. ; Hanlon, Stacey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-1ba957641ca207ed174b2f8fd3f797614b5e2c685692e089752f41275eaae4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell cycle</topic><topic>Cell division</topic><topic>Chromatin</topic><topic>Chromosomes</topic><topic>DNA methylation</topic><topic>Drosophila</topic><topic>Embryos</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Insects</topic><topic>Proteins</topic><topic>Review</topic><topic>RNA polymerase</topic><topic>Territory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peterson, Samantha C.</creatorcontrib><creatorcontrib>Samuelson, Kaylah B.</creatorcontrib><creatorcontrib>Hanlon, Stacey L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peterson, Samantha C.</au><au>Samuelson, Kaylah B.</au><au>Hanlon, Stacey L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Scale Organization of the Drosophila melanogaster Genome</atitle><jtitle>Genes</jtitle><date>2021-05-27</date><risdate>2021</risdate><volume>12</volume><issue>6</issue><spage>817</spage><pages>817-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptional because homologous chromosome pairing is in both germline and somatic tissues, which promote interhomolog interactions such as transvection that can affect gene expression in trans. In this review, we focus on what is known about genome organization in Drosophila and discuss it from TADs to territory. We start by examining intrachromosomal organization at the sub-chromosome level into TADs, followed by a comprehensive analysis of the known proteins that play a key role in TAD formation and boundary establishment. We then zoom out to examine interhomolog interactions such as pairing and transvection that are abundant in Drosophila but rare in other model systems. Finally, we discuss chromosome territories that form within the nucleus, resulting in a complete picture of the multi-scale organization of the Drosophila genome.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34071789</pmid><doi>10.3390/genes12060817</doi><orcidid>https://orcid.org/0000-0002-7682-5311</orcidid><orcidid>https://orcid.org/0000-0002-1963-8616</orcidid><orcidid>https://orcid.org/0000-0002-2915-1350</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2021-05, Vol.12 (6), p.817
issn 2073-4425
2073-4425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8228293
source Publicly Available Content (ProQuest); PubMed Central
subjects Cell cycle
Cell division
Chromatin
Chromosomes
DNA methylation
Drosophila
Embryos
Gene expression
Genomes
Insects
Proteins
Review
RNA polymerase
Territory
title Multi-Scale Organization of the Drosophila melanogaster Genome
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Scale%20Organization%20of%20the%20Drosophila%20melanogaster%20Genome&rft.jtitle=Genes&rft.au=Peterson,%20Samantha%20C.&rft.date=2021-05-27&rft.volume=12&rft.issue=6&rft.spage=817&rft.pages=817-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes12060817&rft_dat=%3Cproquest_pubme%3E2544821359%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-1ba957641ca207ed174b2f8fd3f797614b5e2c685692e089752f41275eaae4363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544821359&rft_id=info:pmid/34071789&rfr_iscdi=true