Loading…
3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives
Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surg...
Saved in:
Published in: | International journal of nanomedicine 2021-01, Vol.16, p.4289-4319 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-2c0091695083ea6c12ede8b7049ca6305c1467dea107baeb7e13a78064c87cfe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-2c0091695083ea6c12ede8b7049ca6305c1467dea107baeb7e13a78064c87cfe3 |
container_end_page | 4319 |
container_issue | |
container_start_page | 4289 |
container_title | International journal of nanomedicine |
container_volume | 16 |
creator | Cheng, Lijia Suresh K, Shoma He, Hongyan Rajput, Ritu Singh Feng, Qiyang Ramesh, Saravanan Wang, Yuzhuang Krishnan, Sasirekha Ostrovidov, Serge Camci-Unal, Gulden Ramalingam, Murugan |
description | Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives. |
doi_str_mv | 10.2147/IJN.S311001 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8239380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A672647771</galeid><sourcerecordid>A672647771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-2c0091695083ea6c12ede8b7049ca6305c1467dea107baeb7e13a78064c87cfe3</originalsourceid><addsrcrecordid>eNptkUFvEzEQhS0EoqVw4o4scUQbPPbu2ssBKZQCRaVUNJwtr3c2dZTYwfYG9d9jaCithHywNf7e08w8Qp4Dm3Go5evTz-ezSwHAGDwghwBSVZyBeHjnfUCepLRirJGq7R6TA1FzAC75IVmJ9_QiOp-dX9Iw0i_OxlBR4wd6bnxI1qyRvgse6eXUp-zylDG9oXP6DXcOf9Lg6QLtlXcF_KNaROPT2mQXfKlcYExbtNntMD0lj0azTvhsfx-R7x9OFsefqrOvH0-P52eVbUDlilvGOmi7himBprXAcUDVS1Z31rSCNRbqVg5ogMneYC8RhJGKtbVV0o4ojsjbG9_t1G9wsOhzNGu9jW5j4rUOxun7P95d6WXYacVFJxQrBi_3BjH8mDBlvQpTLOMkzZuGCyG4FP-oZVmRdn4MxcxuXLJ63kre1lJKKNTsP1Q5A26cLXsdXanfE7y6EZQcUoo43jYOTP_OW5e89T7vQr-4O-st-zdg8QubkqSR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552333273</pqid></control><display><type>article</type><title>3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives</title><source>Taylor & Francis Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Cheng, Lijia ; Suresh K, Shoma ; He, Hongyan ; Rajput, Ritu Singh ; Feng, Qiyang ; Ramesh, Saravanan ; Wang, Yuzhuang ; Krishnan, Sasirekha ; Ostrovidov, Serge ; Camci-Unal, Gulden ; Ramalingam, Murugan</creator><creatorcontrib>Cheng, Lijia ; Suresh K, Shoma ; He, Hongyan ; Rajput, Ritu Singh ; Feng, Qiyang ; Ramesh, Saravanan ; Wang, Yuzhuang ; Krishnan, Sasirekha ; Ostrovidov, Serge ; Camci-Unal, Gulden ; Ramalingam, Murugan</creatorcontrib><description>Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.</description><identifier>ISSN: 1178-2013</identifier><identifier>ISSN: 1176-9114</identifier><identifier>EISSN: 1178-2013</identifier><identifier>DOI: 10.2147/IJN.S311001</identifier><identifier>PMID: 34211272</identifier><language>eng</language><publisher>New Zealand: Dove Medical Press Limited</publisher><subject>3-D printers ; 3D printing ; Additive manufacturing ; Alloys - chemistry ; Animals ; Biocompatible Materials - chemistry ; Biological products ; Biomedical materials ; Blood & organ donations ; Bone and Bones - physiology ; Bone Substitutes - chemistry ; Bones ; Composite materials ; Defects ; Environmental impact ; Fractures ; Humans ; Lasers ; Medical research ; Metals ; Nanomaterials ; Nanostructures - chemistry ; Polymers ; Printing, Three-Dimensional - instrumentation ; Regeneration ; Review ; Skin & tissue grafts ; Stereolithography ; Tissue engineering ; Tissue Engineering - methods ; Titanium - chemistry ; Trauma</subject><ispartof>International journal of nanomedicine, 2021-01, Vol.16, p.4289-4319</ispartof><rights>2021 Cheng et al.</rights><rights>COPYRIGHT 2021 Dove Medical Press Limited</rights><rights>2021. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Cheng et al. 2021 Cheng et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-2c0091695083ea6c12ede8b7049ca6305c1467dea107baeb7e13a78064c87cfe3</citedby><cites>FETCH-LOGICAL-c518t-2c0091695083ea6c12ede8b7049ca6305c1467dea107baeb7e13a78064c87cfe3</cites><orcidid>0000-0003-4649-5371 ; 0000-0002-4412-6807 ; 0000-0002-4189-8086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2552333273/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2552333273?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34211272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Lijia</creatorcontrib><creatorcontrib>Suresh K, Shoma</creatorcontrib><creatorcontrib>He, Hongyan</creatorcontrib><creatorcontrib>Rajput, Ritu Singh</creatorcontrib><creatorcontrib>Feng, Qiyang</creatorcontrib><creatorcontrib>Ramesh, Saravanan</creatorcontrib><creatorcontrib>Wang, Yuzhuang</creatorcontrib><creatorcontrib>Krishnan, Sasirekha</creatorcontrib><creatorcontrib>Ostrovidov, Serge</creatorcontrib><creatorcontrib>Camci-Unal, Gulden</creatorcontrib><creatorcontrib>Ramalingam, Murugan</creatorcontrib><title>3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives</title><title>International journal of nanomedicine</title><addtitle>Int J Nanomedicine</addtitle><description>Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>Alloys - chemistry</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological products</subject><subject>Biomedical materials</subject><subject>Blood & organ donations</subject><subject>Bone and Bones - physiology</subject><subject>Bone Substitutes - chemistry</subject><subject>Bones</subject><subject>Composite materials</subject><subject>Defects</subject><subject>Environmental impact</subject><subject>Fractures</subject><subject>Humans</subject><subject>Lasers</subject><subject>Medical research</subject><subject>Metals</subject><subject>Nanomaterials</subject><subject>Nanostructures - chemistry</subject><subject>Polymers</subject><subject>Printing, Three-Dimensional - instrumentation</subject><subject>Regeneration</subject><subject>Review</subject><subject>Skin & tissue grafts</subject><subject>Stereolithography</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Titanium - chemistry</subject><subject>Trauma</subject><issn>1178-2013</issn><issn>1176-9114</issn><issn>1178-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkUFvEzEQhS0EoqVw4o4scUQbPPbu2ssBKZQCRaVUNJwtr3c2dZTYwfYG9d9jaCithHywNf7e08w8Qp4Dm3Go5evTz-ezSwHAGDwghwBSVZyBeHjnfUCepLRirJGq7R6TA1FzAC75IVmJ9_QiOp-dX9Iw0i_OxlBR4wd6bnxI1qyRvgse6eXUp-zylDG9oXP6DXcOf9Lg6QLtlXcF_KNaROPT2mQXfKlcYExbtNntMD0lj0azTvhsfx-R7x9OFsefqrOvH0-P52eVbUDlilvGOmi7himBprXAcUDVS1Z31rSCNRbqVg5ogMneYC8RhJGKtbVV0o4ojsjbG9_t1G9wsOhzNGu9jW5j4rUOxun7P95d6WXYacVFJxQrBi_3BjH8mDBlvQpTLOMkzZuGCyG4FP-oZVmRdn4MxcxuXLJ63kre1lJKKNTsP1Q5A26cLXsdXanfE7y6EZQcUoo43jYOTP_OW5e89T7vQr-4O-st-zdg8QubkqSR</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Cheng, Lijia</creator><creator>Suresh K, Shoma</creator><creator>He, Hongyan</creator><creator>Rajput, Ritu Singh</creator><creator>Feng, Qiyang</creator><creator>Ramesh, Saravanan</creator><creator>Wang, Yuzhuang</creator><creator>Krishnan, Sasirekha</creator><creator>Ostrovidov, Serge</creator><creator>Camci-Unal, Gulden</creator><creator>Ramalingam, Murugan</creator><general>Dove Medical Press Limited</general><general>Taylor & Francis Ltd</general><general>Dove</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4649-5371</orcidid><orcidid>https://orcid.org/0000-0002-4412-6807</orcidid><orcidid>https://orcid.org/0000-0002-4189-8086</orcidid></search><sort><creationdate>20210101</creationdate><title>3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives</title><author>Cheng, Lijia ; Suresh K, Shoma ; He, Hongyan ; Rajput, Ritu Singh ; Feng, Qiyang ; Ramesh, Saravanan ; Wang, Yuzhuang ; Krishnan, Sasirekha ; Ostrovidov, Serge ; Camci-Unal, Gulden ; Ramalingam, Murugan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-2c0091695083ea6c12ede8b7049ca6305c1467dea107baeb7e13a78064c87cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>Alloys - chemistry</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological products</topic><topic>Biomedical materials</topic><topic>Blood & organ donations</topic><topic>Bone and Bones - physiology</topic><topic>Bone Substitutes - chemistry</topic><topic>Bones</topic><topic>Composite materials</topic><topic>Defects</topic><topic>Environmental impact</topic><topic>Fractures</topic><topic>Humans</topic><topic>Lasers</topic><topic>Medical research</topic><topic>Metals</topic><topic>Nanomaterials</topic><topic>Nanostructures - chemistry</topic><topic>Polymers</topic><topic>Printing, Three-Dimensional - instrumentation</topic><topic>Regeneration</topic><topic>Review</topic><topic>Skin & tissue grafts</topic><topic>Stereolithography</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Titanium - chemistry</topic><topic>Trauma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Lijia</creatorcontrib><creatorcontrib>Suresh K, Shoma</creatorcontrib><creatorcontrib>He, Hongyan</creatorcontrib><creatorcontrib>Rajput, Ritu Singh</creatorcontrib><creatorcontrib>Feng, Qiyang</creatorcontrib><creatorcontrib>Ramesh, Saravanan</creatorcontrib><creatorcontrib>Wang, Yuzhuang</creatorcontrib><creatorcontrib>Krishnan, Sasirekha</creatorcontrib><creatorcontrib>Ostrovidov, Serge</creatorcontrib><creatorcontrib>Camci-Unal, Gulden</creatorcontrib><creatorcontrib>Ramalingam, Murugan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of nanomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Lijia</au><au>Suresh K, Shoma</au><au>He, Hongyan</au><au>Rajput, Ritu Singh</au><au>Feng, Qiyang</au><au>Ramesh, Saravanan</au><au>Wang, Yuzhuang</au><au>Krishnan, Sasirekha</au><au>Ostrovidov, Serge</au><au>Camci-Unal, Gulden</au><au>Ramalingam, Murugan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives</atitle><jtitle>International journal of nanomedicine</jtitle><addtitle>Int J Nanomedicine</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>16</volume><spage>4289</spage><epage>4319</epage><pages>4289-4319</pages><issn>1178-2013</issn><issn>1176-9114</issn><eissn>1178-2013</eissn><abstract>Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.</abstract><cop>New Zealand</cop><pub>Dove Medical Press Limited</pub><pmid>34211272</pmid><doi>10.2147/IJN.S311001</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-4649-5371</orcidid><orcidid>https://orcid.org/0000-0002-4412-6807</orcidid><orcidid>https://orcid.org/0000-0002-4189-8086</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1178-2013 |
ispartof | International journal of nanomedicine, 2021-01, Vol.16, p.4289-4319 |
issn | 1178-2013 1176-9114 1178-2013 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8239380 |
source | Taylor & Francis Open Access; Publicly Available Content Database; PubMed Central |
subjects | 3-D printers 3D printing Additive manufacturing Alloys - chemistry Animals Biocompatible Materials - chemistry Biological products Biomedical materials Blood & organ donations Bone and Bones - physiology Bone Substitutes - chemistry Bones Composite materials Defects Environmental impact Fractures Humans Lasers Medical research Metals Nanomaterials Nanostructures - chemistry Polymers Printing, Three-Dimensional - instrumentation Regeneration Review Skin & tissue grafts Stereolithography Tissue engineering Tissue Engineering - methods Titanium - chemistry Trauma |
title | 3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printing%20of%20Micro-%20and%20Nanoscale%20Bone%20Substitutes:%20A%20Review%20on%20Technical%20and%20Translational%20Perspectives&rft.jtitle=International%20journal%20of%20nanomedicine&rft.au=Cheng,%20Lijia&rft.date=2021-01-01&rft.volume=16&rft.spage=4289&rft.epage=4319&rft.pages=4289-4319&rft.issn=1178-2013&rft.eissn=1178-2013&rft_id=info:doi/10.2147/IJN.S311001&rft_dat=%3Cgale_pubme%3EA672647771%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-2c0091695083ea6c12ede8b7049ca6305c1467dea107baeb7e13a78064c87cfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2552333273&rft_id=info:pmid/34211272&rft_galeid=A672647771&rfr_iscdi=true |