Loading…

3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives

Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surg...

Full description

Saved in:
Bibliographic Details
Published in:International journal of nanomedicine 2021-01, Vol.16, p.4289-4319
Main Authors: Cheng, Lijia, Suresh K, Shoma, He, Hongyan, Rajput, Ritu Singh, Feng, Qiyang, Ramesh, Saravanan, Wang, Yuzhuang, Krishnan, Sasirekha, Ostrovidov, Serge, Camci-Unal, Gulden, Ramalingam, Murugan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-2c0091695083ea6c12ede8b7049ca6305c1467dea107baeb7e13a78064c87cfe3
cites cdi_FETCH-LOGICAL-c518t-2c0091695083ea6c12ede8b7049ca6305c1467dea107baeb7e13a78064c87cfe3
container_end_page 4319
container_issue
container_start_page 4289
container_title International journal of nanomedicine
container_volume 16
creator Cheng, Lijia
Suresh K, Shoma
He, Hongyan
Rajput, Ritu Singh
Feng, Qiyang
Ramesh, Saravanan
Wang, Yuzhuang
Krishnan, Sasirekha
Ostrovidov, Serge
Camci-Unal, Gulden
Ramalingam, Murugan
description Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.
doi_str_mv 10.2147/IJN.S311001
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8239380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A672647771</galeid><sourcerecordid>A672647771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-2c0091695083ea6c12ede8b7049ca6305c1467dea107baeb7e13a78064c87cfe3</originalsourceid><addsrcrecordid>eNptkUFvEzEQhS0EoqVw4o4scUQbPPbu2ssBKZQCRaVUNJwtr3c2dZTYwfYG9d9jaCithHywNf7e08w8Qp4Dm3Go5evTz-ezSwHAGDwghwBSVZyBeHjnfUCepLRirJGq7R6TA1FzAC75IVmJ9_QiOp-dX9Iw0i_OxlBR4wd6bnxI1qyRvgse6eXUp-zylDG9oXP6DXcOf9Lg6QLtlXcF_KNaROPT2mQXfKlcYExbtNntMD0lj0azTvhsfx-R7x9OFsefqrOvH0-P52eVbUDlilvGOmi7himBprXAcUDVS1Z31rSCNRbqVg5ogMneYC8RhJGKtbVV0o4ojsjbG9_t1G9wsOhzNGu9jW5j4rUOxun7P95d6WXYacVFJxQrBi_3BjH8mDBlvQpTLOMkzZuGCyG4FP-oZVmRdn4MxcxuXLJ63kre1lJKKNTsP1Q5A26cLXsdXanfE7y6EZQcUoo43jYOTP_OW5e89T7vQr-4O-st-zdg8QubkqSR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552333273</pqid></control><display><type>article</type><title>3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives</title><source>Taylor &amp; Francis Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Cheng, Lijia ; Suresh K, Shoma ; He, Hongyan ; Rajput, Ritu Singh ; Feng, Qiyang ; Ramesh, Saravanan ; Wang, Yuzhuang ; Krishnan, Sasirekha ; Ostrovidov, Serge ; Camci-Unal, Gulden ; Ramalingam, Murugan</creator><creatorcontrib>Cheng, Lijia ; Suresh K, Shoma ; He, Hongyan ; Rajput, Ritu Singh ; Feng, Qiyang ; Ramesh, Saravanan ; Wang, Yuzhuang ; Krishnan, Sasirekha ; Ostrovidov, Serge ; Camci-Unal, Gulden ; Ramalingam, Murugan</creatorcontrib><description>Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.</description><identifier>ISSN: 1178-2013</identifier><identifier>ISSN: 1176-9114</identifier><identifier>EISSN: 1178-2013</identifier><identifier>DOI: 10.2147/IJN.S311001</identifier><identifier>PMID: 34211272</identifier><language>eng</language><publisher>New Zealand: Dove Medical Press Limited</publisher><subject>3-D printers ; 3D printing ; Additive manufacturing ; Alloys - chemistry ; Animals ; Biocompatible Materials - chemistry ; Biological products ; Biomedical materials ; Blood &amp; organ donations ; Bone and Bones - physiology ; Bone Substitutes - chemistry ; Bones ; Composite materials ; Defects ; Environmental impact ; Fractures ; Humans ; Lasers ; Medical research ; Metals ; Nanomaterials ; Nanostructures - chemistry ; Polymers ; Printing, Three-Dimensional - instrumentation ; Regeneration ; Review ; Skin &amp; tissue grafts ; Stereolithography ; Tissue engineering ; Tissue Engineering - methods ; Titanium - chemistry ; Trauma</subject><ispartof>International journal of nanomedicine, 2021-01, Vol.16, p.4289-4319</ispartof><rights>2021 Cheng et al.</rights><rights>COPYRIGHT 2021 Dove Medical Press Limited</rights><rights>2021. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Cheng et al. 2021 Cheng et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-2c0091695083ea6c12ede8b7049ca6305c1467dea107baeb7e13a78064c87cfe3</citedby><cites>FETCH-LOGICAL-c518t-2c0091695083ea6c12ede8b7049ca6305c1467dea107baeb7e13a78064c87cfe3</cites><orcidid>0000-0003-4649-5371 ; 0000-0002-4412-6807 ; 0000-0002-4189-8086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2552333273/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2552333273?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34211272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Lijia</creatorcontrib><creatorcontrib>Suresh K, Shoma</creatorcontrib><creatorcontrib>He, Hongyan</creatorcontrib><creatorcontrib>Rajput, Ritu Singh</creatorcontrib><creatorcontrib>Feng, Qiyang</creatorcontrib><creatorcontrib>Ramesh, Saravanan</creatorcontrib><creatorcontrib>Wang, Yuzhuang</creatorcontrib><creatorcontrib>Krishnan, Sasirekha</creatorcontrib><creatorcontrib>Ostrovidov, Serge</creatorcontrib><creatorcontrib>Camci-Unal, Gulden</creatorcontrib><creatorcontrib>Ramalingam, Murugan</creatorcontrib><title>3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives</title><title>International journal of nanomedicine</title><addtitle>Int J Nanomedicine</addtitle><description>Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>Alloys - chemistry</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological products</subject><subject>Biomedical materials</subject><subject>Blood &amp; organ donations</subject><subject>Bone and Bones - physiology</subject><subject>Bone Substitutes - chemistry</subject><subject>Bones</subject><subject>Composite materials</subject><subject>Defects</subject><subject>Environmental impact</subject><subject>Fractures</subject><subject>Humans</subject><subject>Lasers</subject><subject>Medical research</subject><subject>Metals</subject><subject>Nanomaterials</subject><subject>Nanostructures - chemistry</subject><subject>Polymers</subject><subject>Printing, Three-Dimensional - instrumentation</subject><subject>Regeneration</subject><subject>Review</subject><subject>Skin &amp; tissue grafts</subject><subject>Stereolithography</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Titanium - chemistry</subject><subject>Trauma</subject><issn>1178-2013</issn><issn>1176-9114</issn><issn>1178-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkUFvEzEQhS0EoqVw4o4scUQbPPbu2ssBKZQCRaVUNJwtr3c2dZTYwfYG9d9jaCithHywNf7e08w8Qp4Dm3Go5evTz-ezSwHAGDwghwBSVZyBeHjnfUCepLRirJGq7R6TA1FzAC75IVmJ9_QiOp-dX9Iw0i_OxlBR4wd6bnxI1qyRvgse6eXUp-zylDG9oXP6DXcOf9Lg6QLtlXcF_KNaROPT2mQXfKlcYExbtNntMD0lj0azTvhsfx-R7x9OFsefqrOvH0-P52eVbUDlilvGOmi7himBprXAcUDVS1Z31rSCNRbqVg5ogMneYC8RhJGKtbVV0o4ojsjbG9_t1G9wsOhzNGu9jW5j4rUOxun7P95d6WXYacVFJxQrBi_3BjH8mDBlvQpTLOMkzZuGCyG4FP-oZVmRdn4MxcxuXLJ63kre1lJKKNTsP1Q5A26cLXsdXanfE7y6EZQcUoo43jYOTP_OW5e89T7vQr-4O-st-zdg8QubkqSR</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Cheng, Lijia</creator><creator>Suresh K, Shoma</creator><creator>He, Hongyan</creator><creator>Rajput, Ritu Singh</creator><creator>Feng, Qiyang</creator><creator>Ramesh, Saravanan</creator><creator>Wang, Yuzhuang</creator><creator>Krishnan, Sasirekha</creator><creator>Ostrovidov, Serge</creator><creator>Camci-Unal, Gulden</creator><creator>Ramalingam, Murugan</creator><general>Dove Medical Press Limited</general><general>Taylor &amp; Francis Ltd</general><general>Dove</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4649-5371</orcidid><orcidid>https://orcid.org/0000-0002-4412-6807</orcidid><orcidid>https://orcid.org/0000-0002-4189-8086</orcidid></search><sort><creationdate>20210101</creationdate><title>3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives</title><author>Cheng, Lijia ; Suresh K, Shoma ; He, Hongyan ; Rajput, Ritu Singh ; Feng, Qiyang ; Ramesh, Saravanan ; Wang, Yuzhuang ; Krishnan, Sasirekha ; Ostrovidov, Serge ; Camci-Unal, Gulden ; Ramalingam, Murugan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-2c0091695083ea6c12ede8b7049ca6305c1467dea107baeb7e13a78064c87cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>Alloys - chemistry</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological products</topic><topic>Biomedical materials</topic><topic>Blood &amp; organ donations</topic><topic>Bone and Bones - physiology</topic><topic>Bone Substitutes - chemistry</topic><topic>Bones</topic><topic>Composite materials</topic><topic>Defects</topic><topic>Environmental impact</topic><topic>Fractures</topic><topic>Humans</topic><topic>Lasers</topic><topic>Medical research</topic><topic>Metals</topic><topic>Nanomaterials</topic><topic>Nanostructures - chemistry</topic><topic>Polymers</topic><topic>Printing, Three-Dimensional - instrumentation</topic><topic>Regeneration</topic><topic>Review</topic><topic>Skin &amp; tissue grafts</topic><topic>Stereolithography</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Titanium - chemistry</topic><topic>Trauma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Lijia</creatorcontrib><creatorcontrib>Suresh K, Shoma</creatorcontrib><creatorcontrib>He, Hongyan</creatorcontrib><creatorcontrib>Rajput, Ritu Singh</creatorcontrib><creatorcontrib>Feng, Qiyang</creatorcontrib><creatorcontrib>Ramesh, Saravanan</creatorcontrib><creatorcontrib>Wang, Yuzhuang</creatorcontrib><creatorcontrib>Krishnan, Sasirekha</creatorcontrib><creatorcontrib>Ostrovidov, Serge</creatorcontrib><creatorcontrib>Camci-Unal, Gulden</creatorcontrib><creatorcontrib>Ramalingam, Murugan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of nanomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Lijia</au><au>Suresh K, Shoma</au><au>He, Hongyan</au><au>Rajput, Ritu Singh</au><au>Feng, Qiyang</au><au>Ramesh, Saravanan</au><au>Wang, Yuzhuang</au><au>Krishnan, Sasirekha</au><au>Ostrovidov, Serge</au><au>Camci-Unal, Gulden</au><au>Ramalingam, Murugan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives</atitle><jtitle>International journal of nanomedicine</jtitle><addtitle>Int J Nanomedicine</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>16</volume><spage>4289</spage><epage>4319</epage><pages>4289-4319</pages><issn>1178-2013</issn><issn>1176-9114</issn><eissn>1178-2013</eissn><abstract>Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.</abstract><cop>New Zealand</cop><pub>Dove Medical Press Limited</pub><pmid>34211272</pmid><doi>10.2147/IJN.S311001</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-4649-5371</orcidid><orcidid>https://orcid.org/0000-0002-4412-6807</orcidid><orcidid>https://orcid.org/0000-0002-4189-8086</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1178-2013
ispartof International journal of nanomedicine, 2021-01, Vol.16, p.4289-4319
issn 1178-2013
1176-9114
1178-2013
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8239380
source Taylor & Francis Open Access; Publicly Available Content Database; PubMed Central
subjects 3-D printers
3D printing
Additive manufacturing
Alloys - chemistry
Animals
Biocompatible Materials - chemistry
Biological products
Biomedical materials
Blood & organ donations
Bone and Bones - physiology
Bone Substitutes - chemistry
Bones
Composite materials
Defects
Environmental impact
Fractures
Humans
Lasers
Medical research
Metals
Nanomaterials
Nanostructures - chemistry
Polymers
Printing, Three-Dimensional - instrumentation
Regeneration
Review
Skin & tissue grafts
Stereolithography
Tissue engineering
Tissue Engineering - methods
Titanium - chemistry
Trauma
title 3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printing%20of%20Micro-%20and%20Nanoscale%20Bone%20Substitutes:%20A%20Review%20on%20Technical%20and%20Translational%20Perspectives&rft.jtitle=International%20journal%20of%20nanomedicine&rft.au=Cheng,%20Lijia&rft.date=2021-01-01&rft.volume=16&rft.spage=4289&rft.epage=4319&rft.pages=4289-4319&rft.issn=1178-2013&rft.eissn=1178-2013&rft_id=info:doi/10.2147/IJN.S311001&rft_dat=%3Cgale_pubme%3EA672647771%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-2c0091695083ea6c12ede8b7049ca6305c1467dea107baeb7e13a78064c87cfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2552333273&rft_id=info:pmid/34211272&rft_galeid=A672647771&rfr_iscdi=true