Loading…

Analysis of COVID‐19 and comorbidity co‐infection model with optimal control

In this work, we develop and analyze a mathematical model for the dynamics of COVID‐19 with re‐infection in order to assess the impact of prior comorbidity (specifically, diabetes mellitus) on COVID‐19 complications. The model is simulated using data relevant to the dynamics of the diseases in Lagos...

Full description

Saved in:
Bibliographic Details
Published in:Optimal control applications & methods 2021-11, Vol.42 (6), p.1568-1590
Main Authors: Omame, Andrew, Sene, Ndolane, Nometa, Ikenna, Nwakanma, Cosmas I., Nwafor, Emmanuel U., Iheonu, Nneka O., Okuonghae, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4158-e1ad250b8de63f48c0ebd3f790abbaf3450966993d397f61381f1accdb274f953
cites cdi_FETCH-LOGICAL-c4158-e1ad250b8de63f48c0ebd3f790abbaf3450966993d397f61381f1accdb274f953
container_end_page 1590
container_issue 6
container_start_page 1568
container_title Optimal control applications & methods
container_volume 42
creator Omame, Andrew
Sene, Ndolane
Nometa, Ikenna
Nwakanma, Cosmas I.
Nwafor, Emmanuel U.
Iheonu, Nneka O.
Okuonghae, Daniel
description In this work, we develop and analyze a mathematical model for the dynamics of COVID‐19 with re‐infection in order to assess the impact of prior comorbidity (specifically, diabetes mellitus) on COVID‐19 complications. The model is simulated using data relevant to the dynamics of the diseases in Lagos, Nigeria, making predictions for the attainment of peak periods in the presence or absence of comorbidity. The model is shown to undergo the phenomenon of backward bifurcation caused by the parameter accounting for increased susceptibility to COVID‐19 infection by comorbid susceptibles as well as the rate of reinfection by those who have recovered from a previous COVID‐19 infection. Simulations of the cumulative number of active cases (including those with comorbidity), at different reinfection rates, show infection peaks reducing with decreasing reinfection of those who have recovered from a previous COVID‐19 infection. In addition, optimal control and cost‐effectiveness analysis of the model reveal that the strategy that prevents COVID‐19 infection by comorbid susceptibles is the most cost‐effective of all the control strategies for the prevention of COVID‐19.
doi_str_mv 10.1002/oca.2748
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8242909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595749863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4158-e1ad250b8de63f48c0ebd3f790abbaf3450966993d397f61381f1accdb274f953</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMotl7ARxhw42Y0t5lJNkKpt4JQF-o2ZHKxKZlJnUyV7nwEn9EnMVVRFFydwzkf_7n8ABwgeIwgxCdByWNcUbYBhghynqMC0U0whIiSHENWDcBOjHMIYYUI3gYDQjEuq4oOwc2olX4VXcyCzcbT-8nZ28sr4plsdaZCE7raadevUp7qrrVG9S60WRO08dmz62dZWPSukT4Rbd8Fvwe2rPTR7H_FXXB3cX47vsqvp5eT8eg6VxQVLDdIalzAmmlTEkuZgqbWxFYcyrqWltAC8rLknGjCK1siwpBFUildpzstL8guOP3UXSzrxmhl0nTpxaJLy3QrEaQTvzutm4mH8CQYpphDngSOvgS68Lg0sReNi8p4L1sTllHggjKO0p9gQg__oPOw7NLj1hQvKspZSX4EVRdi7Iz9XgZBsbZJJJvE2qaE5p_os_Nm9S8npuPRB_8OgaWTuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595749863</pqid></control><display><type>article</type><title>Analysis of COVID‐19 and comorbidity co‐infection model with optimal control</title><source>Wiley</source><creator>Omame, Andrew ; Sene, Ndolane ; Nometa, Ikenna ; Nwakanma, Cosmas I. ; Nwafor, Emmanuel U. ; Iheonu, Nneka O. ; Okuonghae, Daniel</creator><creatorcontrib>Omame, Andrew ; Sene, Ndolane ; Nometa, Ikenna ; Nwakanma, Cosmas I. ; Nwafor, Emmanuel U. ; Iheonu, Nneka O. ; Okuonghae, Daniel</creatorcontrib><description>In this work, we develop and analyze a mathematical model for the dynamics of COVID‐19 with re‐infection in order to assess the impact of prior comorbidity (specifically, diabetes mellitus) on COVID‐19 complications. The model is simulated using data relevant to the dynamics of the diseases in Lagos, Nigeria, making predictions for the attainment of peak periods in the presence or absence of comorbidity. The model is shown to undergo the phenomenon of backward bifurcation caused by the parameter accounting for increased susceptibility to COVID‐19 infection by comorbid susceptibles as well as the rate of reinfection by those who have recovered from a previous COVID‐19 infection. Simulations of the cumulative number of active cases (including those with comorbidity), at different reinfection rates, show infection peaks reducing with decreasing reinfection of those who have recovered from a previous COVID‐19 infection. In addition, optimal control and cost‐effectiveness analysis of the model reveal that the strategy that prevents COVID‐19 infection by comorbid susceptibles is the most cost‐effective of all the control strategies for the prevention of COVID‐19.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2748</identifier><identifier>PMID: 34226774</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>Comorbidity ; Cost analysis ; COVID-19 ; data‐fitting ; Diabetes mellitus ; Infections ; Mathematical models ; Optimal control ; Peak periods ; reinfection</subject><ispartof>Optimal control applications &amp; methods, 2021-11, Vol.42 (6), p.1568-1590</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4158-e1ad250b8de63f48c0ebd3f790abbaf3450966993d397f61381f1accdb274f953</citedby><cites>FETCH-LOGICAL-c4158-e1ad250b8de63f48c0ebd3f790abbaf3450966993d397f61381f1accdb274f953</cites><orcidid>0000-0002-1252-1650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Omame, Andrew</creatorcontrib><creatorcontrib>Sene, Ndolane</creatorcontrib><creatorcontrib>Nometa, Ikenna</creatorcontrib><creatorcontrib>Nwakanma, Cosmas I.</creatorcontrib><creatorcontrib>Nwafor, Emmanuel U.</creatorcontrib><creatorcontrib>Iheonu, Nneka O.</creatorcontrib><creatorcontrib>Okuonghae, Daniel</creatorcontrib><title>Analysis of COVID‐19 and comorbidity co‐infection model with optimal control</title><title>Optimal control applications &amp; methods</title><description>In this work, we develop and analyze a mathematical model for the dynamics of COVID‐19 with re‐infection in order to assess the impact of prior comorbidity (specifically, diabetes mellitus) on COVID‐19 complications. The model is simulated using data relevant to the dynamics of the diseases in Lagos, Nigeria, making predictions for the attainment of peak periods in the presence or absence of comorbidity. The model is shown to undergo the phenomenon of backward bifurcation caused by the parameter accounting for increased susceptibility to COVID‐19 infection by comorbid susceptibles as well as the rate of reinfection by those who have recovered from a previous COVID‐19 infection. Simulations of the cumulative number of active cases (including those with comorbidity), at different reinfection rates, show infection peaks reducing with decreasing reinfection of those who have recovered from a previous COVID‐19 infection. In addition, optimal control and cost‐effectiveness analysis of the model reveal that the strategy that prevents COVID‐19 infection by comorbid susceptibles is the most cost‐effective of all the control strategies for the prevention of COVID‐19.</description><subject>Comorbidity</subject><subject>Cost analysis</subject><subject>COVID-19</subject><subject>data‐fitting</subject><subject>Diabetes mellitus</subject><subject>Infections</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Peak periods</subject><subject>reinfection</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kctKAzEUhoMotl7ARxhw42Y0t5lJNkKpt4JQF-o2ZHKxKZlJnUyV7nwEn9EnMVVRFFydwzkf_7n8ABwgeIwgxCdByWNcUbYBhghynqMC0U0whIiSHENWDcBOjHMIYYUI3gYDQjEuq4oOwc2olX4VXcyCzcbT-8nZ28sr4plsdaZCE7raadevUp7qrrVG9S60WRO08dmz62dZWPSukT4Rbd8Fvwe2rPTR7H_FXXB3cX47vsqvp5eT8eg6VxQVLDdIalzAmmlTEkuZgqbWxFYcyrqWltAC8rLknGjCK1siwpBFUildpzstL8guOP3UXSzrxmhl0nTpxaJLy3QrEaQTvzutm4mH8CQYpphDngSOvgS68Lg0sReNi8p4L1sTllHggjKO0p9gQg__oPOw7NLj1hQvKspZSX4EVRdi7Iz9XgZBsbZJJJvE2qaE5p_os_Nm9S8npuPRB_8OgaWTuQ</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Omame, Andrew</creator><creator>Sene, Ndolane</creator><creator>Nometa, Ikenna</creator><creator>Nwakanma, Cosmas I.</creator><creator>Nwafor, Emmanuel U.</creator><creator>Iheonu, Nneka O.</creator><creator>Okuonghae, Daniel</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1252-1650</orcidid></search><sort><creationdate>202111</creationdate><title>Analysis of COVID‐19 and comorbidity co‐infection model with optimal control</title><author>Omame, Andrew ; Sene, Ndolane ; Nometa, Ikenna ; Nwakanma, Cosmas I. ; Nwafor, Emmanuel U. ; Iheonu, Nneka O. ; Okuonghae, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4158-e1ad250b8de63f48c0ebd3f790abbaf3450966993d397f61381f1accdb274f953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Comorbidity</topic><topic>Cost analysis</topic><topic>COVID-19</topic><topic>data‐fitting</topic><topic>Diabetes mellitus</topic><topic>Infections</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Peak periods</topic><topic>reinfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omame, Andrew</creatorcontrib><creatorcontrib>Sene, Ndolane</creatorcontrib><creatorcontrib>Nometa, Ikenna</creatorcontrib><creatorcontrib>Nwakanma, Cosmas I.</creatorcontrib><creatorcontrib>Nwafor, Emmanuel U.</creatorcontrib><creatorcontrib>Iheonu, Nneka O.</creatorcontrib><creatorcontrib>Okuonghae, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Optimal control applications &amp; methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omame, Andrew</au><au>Sene, Ndolane</au><au>Nometa, Ikenna</au><au>Nwakanma, Cosmas I.</au><au>Nwafor, Emmanuel U.</au><au>Iheonu, Nneka O.</au><au>Okuonghae, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of COVID‐19 and comorbidity co‐infection model with optimal control</atitle><jtitle>Optimal control applications &amp; methods</jtitle><date>2021-11</date><risdate>2021</risdate><volume>42</volume><issue>6</issue><spage>1568</spage><epage>1590</epage><pages>1568-1590</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>In this work, we develop and analyze a mathematical model for the dynamics of COVID‐19 with re‐infection in order to assess the impact of prior comorbidity (specifically, diabetes mellitus) on COVID‐19 complications. The model is simulated using data relevant to the dynamics of the diseases in Lagos, Nigeria, making predictions for the attainment of peak periods in the presence or absence of comorbidity. The model is shown to undergo the phenomenon of backward bifurcation caused by the parameter accounting for increased susceptibility to COVID‐19 infection by comorbid susceptibles as well as the rate of reinfection by those who have recovered from a previous COVID‐19 infection. Simulations of the cumulative number of active cases (including those with comorbidity), at different reinfection rates, show infection peaks reducing with decreasing reinfection of those who have recovered from a previous COVID‐19 infection. In addition, optimal control and cost‐effectiveness analysis of the model reveal that the strategy that prevents COVID‐19 infection by comorbid susceptibles is the most cost‐effective of all the control strategies for the prevention of COVID‐19.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34226774</pmid><doi>10.1002/oca.2748</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-1252-1650</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-2087
ispartof Optimal control applications & methods, 2021-11, Vol.42 (6), p.1568-1590
issn 0143-2087
1099-1514
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8242909
source Wiley
subjects Comorbidity
Cost analysis
COVID-19
data‐fitting
Diabetes mellitus
Infections
Mathematical models
Optimal control
Peak periods
reinfection
title Analysis of COVID‐19 and comorbidity co‐infection model with optimal control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20COVID%E2%80%9019%20and%20comorbidity%20co%E2%80%90infection%20model%20with%20optimal%20control&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Omame,%20Andrew&rft.date=2021-11&rft.volume=42&rft.issue=6&rft.spage=1568&rft.epage=1590&rft.pages=1568-1590&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.2748&rft_dat=%3Cproquest_pubme%3E2595749863%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4158-e1ad250b8de63f48c0ebd3f790abbaf3450966993d397f61381f1accdb274f953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595749863&rft_id=info:pmid/34226774&rfr_iscdi=true