Loading…
Analysis of COVID‐19 and comorbidity co‐infection model with optimal control
In this work, we develop and analyze a mathematical model for the dynamics of COVID‐19 with re‐infection in order to assess the impact of prior comorbidity (specifically, diabetes mellitus) on COVID‐19 complications. The model is simulated using data relevant to the dynamics of the diseases in Lagos...
Saved in:
Published in: | Optimal control applications & methods 2021-11, Vol.42 (6), p.1568-1590 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4158-e1ad250b8de63f48c0ebd3f790abbaf3450966993d397f61381f1accdb274f953 |
---|---|
cites | cdi_FETCH-LOGICAL-c4158-e1ad250b8de63f48c0ebd3f790abbaf3450966993d397f61381f1accdb274f953 |
container_end_page | 1590 |
container_issue | 6 |
container_start_page | 1568 |
container_title | Optimal control applications & methods |
container_volume | 42 |
creator | Omame, Andrew Sene, Ndolane Nometa, Ikenna Nwakanma, Cosmas I. Nwafor, Emmanuel U. Iheonu, Nneka O. Okuonghae, Daniel |
description | In this work, we develop and analyze a mathematical model for the dynamics of COVID‐19 with re‐infection in order to assess the impact of prior comorbidity (specifically, diabetes mellitus) on COVID‐19 complications. The model is simulated using data relevant to the dynamics of the diseases in Lagos, Nigeria, making predictions for the attainment of peak periods in the presence or absence of comorbidity. The model is shown to undergo the phenomenon of backward bifurcation caused by the parameter accounting for increased susceptibility to COVID‐19 infection by comorbid susceptibles as well as the rate of reinfection by those who have recovered from a previous COVID‐19 infection. Simulations of the cumulative number of active cases (including those with comorbidity), at different reinfection rates, show infection peaks reducing with decreasing reinfection of those who have recovered from a previous COVID‐19 infection. In addition, optimal control and cost‐effectiveness analysis of the model reveal that the strategy that prevents COVID‐19 infection by comorbid susceptibles is the most cost‐effective of all the control strategies for the prevention of COVID‐19. |
doi_str_mv | 10.1002/oca.2748 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8242909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595749863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4158-e1ad250b8de63f48c0ebd3f790abbaf3450966993d397f61381f1accdb274f953</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMotl7ARxhw42Y0t5lJNkKpt4JQF-o2ZHKxKZlJnUyV7nwEn9EnMVVRFFydwzkf_7n8ABwgeIwgxCdByWNcUbYBhghynqMC0U0whIiSHENWDcBOjHMIYYUI3gYDQjEuq4oOwc2olX4VXcyCzcbT-8nZ28sr4plsdaZCE7raadevUp7qrrVG9S60WRO08dmz62dZWPSukT4Rbd8Fvwe2rPTR7H_FXXB3cX47vsqvp5eT8eg6VxQVLDdIalzAmmlTEkuZgqbWxFYcyrqWltAC8rLknGjCK1siwpBFUildpzstL8guOP3UXSzrxmhl0nTpxaJLy3QrEaQTvzutm4mH8CQYpphDngSOvgS68Lg0sReNi8p4L1sTllHggjKO0p9gQg__oPOw7NLj1hQvKspZSX4EVRdi7Iz9XgZBsbZJJJvE2qaE5p_os_Nm9S8npuPRB_8OgaWTuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595749863</pqid></control><display><type>article</type><title>Analysis of COVID‐19 and comorbidity co‐infection model with optimal control</title><source>Wiley</source><creator>Omame, Andrew ; Sene, Ndolane ; Nometa, Ikenna ; Nwakanma, Cosmas I. ; Nwafor, Emmanuel U. ; Iheonu, Nneka O. ; Okuonghae, Daniel</creator><creatorcontrib>Omame, Andrew ; Sene, Ndolane ; Nometa, Ikenna ; Nwakanma, Cosmas I. ; Nwafor, Emmanuel U. ; Iheonu, Nneka O. ; Okuonghae, Daniel</creatorcontrib><description>In this work, we develop and analyze a mathematical model for the dynamics of COVID‐19 with re‐infection in order to assess the impact of prior comorbidity (specifically, diabetes mellitus) on COVID‐19 complications. The model is simulated using data relevant to the dynamics of the diseases in Lagos, Nigeria, making predictions for the attainment of peak periods in the presence or absence of comorbidity. The model is shown to undergo the phenomenon of backward bifurcation caused by the parameter accounting for increased susceptibility to COVID‐19 infection by comorbid susceptibles as well as the rate of reinfection by those who have recovered from a previous COVID‐19 infection. Simulations of the cumulative number of active cases (including those with comorbidity), at different reinfection rates, show infection peaks reducing with decreasing reinfection of those who have recovered from a previous COVID‐19 infection. In addition, optimal control and cost‐effectiveness analysis of the model reveal that the strategy that prevents COVID‐19 infection by comorbid susceptibles is the most cost‐effective of all the control strategies for the prevention of COVID‐19.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2748</identifier><identifier>PMID: 34226774</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>Comorbidity ; Cost analysis ; COVID-19 ; data‐fitting ; Diabetes mellitus ; Infections ; Mathematical models ; Optimal control ; Peak periods ; reinfection</subject><ispartof>Optimal control applications & methods, 2021-11, Vol.42 (6), p.1568-1590</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4158-e1ad250b8de63f48c0ebd3f790abbaf3450966993d397f61381f1accdb274f953</citedby><cites>FETCH-LOGICAL-c4158-e1ad250b8de63f48c0ebd3f790abbaf3450966993d397f61381f1accdb274f953</cites><orcidid>0000-0002-1252-1650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Omame, Andrew</creatorcontrib><creatorcontrib>Sene, Ndolane</creatorcontrib><creatorcontrib>Nometa, Ikenna</creatorcontrib><creatorcontrib>Nwakanma, Cosmas I.</creatorcontrib><creatorcontrib>Nwafor, Emmanuel U.</creatorcontrib><creatorcontrib>Iheonu, Nneka O.</creatorcontrib><creatorcontrib>Okuonghae, Daniel</creatorcontrib><title>Analysis of COVID‐19 and comorbidity co‐infection model with optimal control</title><title>Optimal control applications & methods</title><description>In this work, we develop and analyze a mathematical model for the dynamics of COVID‐19 with re‐infection in order to assess the impact of prior comorbidity (specifically, diabetes mellitus) on COVID‐19 complications. The model is simulated using data relevant to the dynamics of the diseases in Lagos, Nigeria, making predictions for the attainment of peak periods in the presence or absence of comorbidity. The model is shown to undergo the phenomenon of backward bifurcation caused by the parameter accounting for increased susceptibility to COVID‐19 infection by comorbid susceptibles as well as the rate of reinfection by those who have recovered from a previous COVID‐19 infection. Simulations of the cumulative number of active cases (including those with comorbidity), at different reinfection rates, show infection peaks reducing with decreasing reinfection of those who have recovered from a previous COVID‐19 infection. In addition, optimal control and cost‐effectiveness analysis of the model reveal that the strategy that prevents COVID‐19 infection by comorbid susceptibles is the most cost‐effective of all the control strategies for the prevention of COVID‐19.</description><subject>Comorbidity</subject><subject>Cost analysis</subject><subject>COVID-19</subject><subject>data‐fitting</subject><subject>Diabetes mellitus</subject><subject>Infections</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Peak periods</subject><subject>reinfection</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kctKAzEUhoMotl7ARxhw42Y0t5lJNkKpt4JQF-o2ZHKxKZlJnUyV7nwEn9EnMVVRFFydwzkf_7n8ABwgeIwgxCdByWNcUbYBhghynqMC0U0whIiSHENWDcBOjHMIYYUI3gYDQjEuq4oOwc2olX4VXcyCzcbT-8nZ28sr4plsdaZCE7raadevUp7qrrVG9S60WRO08dmz62dZWPSukT4Rbd8Fvwe2rPTR7H_FXXB3cX47vsqvp5eT8eg6VxQVLDdIalzAmmlTEkuZgqbWxFYcyrqWltAC8rLknGjCK1siwpBFUildpzstL8guOP3UXSzrxmhl0nTpxaJLy3QrEaQTvzutm4mH8CQYpphDngSOvgS68Lg0sReNi8p4L1sTllHggjKO0p9gQg__oPOw7NLj1hQvKspZSX4EVRdi7Iz9XgZBsbZJJJvE2qaE5p_os_Nm9S8npuPRB_8OgaWTuQ</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Omame, Andrew</creator><creator>Sene, Ndolane</creator><creator>Nometa, Ikenna</creator><creator>Nwakanma, Cosmas I.</creator><creator>Nwafor, Emmanuel U.</creator><creator>Iheonu, Nneka O.</creator><creator>Okuonghae, Daniel</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1252-1650</orcidid></search><sort><creationdate>202111</creationdate><title>Analysis of COVID‐19 and comorbidity co‐infection model with optimal control</title><author>Omame, Andrew ; Sene, Ndolane ; Nometa, Ikenna ; Nwakanma, Cosmas I. ; Nwafor, Emmanuel U. ; Iheonu, Nneka O. ; Okuonghae, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4158-e1ad250b8de63f48c0ebd3f790abbaf3450966993d397f61381f1accdb274f953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Comorbidity</topic><topic>Cost analysis</topic><topic>COVID-19</topic><topic>data‐fitting</topic><topic>Diabetes mellitus</topic><topic>Infections</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Peak periods</topic><topic>reinfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omame, Andrew</creatorcontrib><creatorcontrib>Sene, Ndolane</creatorcontrib><creatorcontrib>Nometa, Ikenna</creatorcontrib><creatorcontrib>Nwakanma, Cosmas I.</creatorcontrib><creatorcontrib>Nwafor, Emmanuel U.</creatorcontrib><creatorcontrib>Iheonu, Nneka O.</creatorcontrib><creatorcontrib>Okuonghae, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Optimal control applications & methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omame, Andrew</au><au>Sene, Ndolane</au><au>Nometa, Ikenna</au><au>Nwakanma, Cosmas I.</au><au>Nwafor, Emmanuel U.</au><au>Iheonu, Nneka O.</au><au>Okuonghae, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of COVID‐19 and comorbidity co‐infection model with optimal control</atitle><jtitle>Optimal control applications & methods</jtitle><date>2021-11</date><risdate>2021</risdate><volume>42</volume><issue>6</issue><spage>1568</spage><epage>1590</epage><pages>1568-1590</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>In this work, we develop and analyze a mathematical model for the dynamics of COVID‐19 with re‐infection in order to assess the impact of prior comorbidity (specifically, diabetes mellitus) on COVID‐19 complications. The model is simulated using data relevant to the dynamics of the diseases in Lagos, Nigeria, making predictions for the attainment of peak periods in the presence or absence of comorbidity. The model is shown to undergo the phenomenon of backward bifurcation caused by the parameter accounting for increased susceptibility to COVID‐19 infection by comorbid susceptibles as well as the rate of reinfection by those who have recovered from a previous COVID‐19 infection. Simulations of the cumulative number of active cases (including those with comorbidity), at different reinfection rates, show infection peaks reducing with decreasing reinfection of those who have recovered from a previous COVID‐19 infection. In addition, optimal control and cost‐effectiveness analysis of the model reveal that the strategy that prevents COVID‐19 infection by comorbid susceptibles is the most cost‐effective of all the control strategies for the prevention of COVID‐19.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34226774</pmid><doi>10.1002/oca.2748</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-1252-1650</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-2087 |
ispartof | Optimal control applications & methods, 2021-11, Vol.42 (6), p.1568-1590 |
issn | 0143-2087 1099-1514 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8242909 |
source | Wiley |
subjects | Comorbidity Cost analysis COVID-19 data‐fitting Diabetes mellitus Infections Mathematical models Optimal control Peak periods reinfection |
title | Analysis of COVID‐19 and comorbidity co‐infection model with optimal control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20COVID%E2%80%9019%20and%20comorbidity%20co%E2%80%90infection%20model%20with%20optimal%20control&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Omame,%20Andrew&rft.date=2021-11&rft.volume=42&rft.issue=6&rft.spage=1568&rft.epage=1590&rft.pages=1568-1590&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.2748&rft_dat=%3Cproquest_pubme%3E2595749863%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4158-e1ad250b8de63f48c0ebd3f790abbaf3450966993d397f61381f1accdb274f953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595749863&rft_id=info:pmid/34226774&rfr_iscdi=true |