Loading…
Polymorphism and Fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3
The all‐solid‐state battery (ASSB) is a promising candidate for electrochemical energy storage. In view of the limited availability of lithium, however, alternative systems based on earth‐abundant and inexpensive elements are urgently sought. Besides well‐studied sodium compounds, potassium‐based sy...
Saved in:
Published in: | Angewandte Chemie International Edition 2021-06, Vol.60 (24), p.13641-13646 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 13646 |
container_issue | 24 |
container_start_page | 13641 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | Haffner, Arthur Hatz, Anna‐Katharina Zeman, Otto E. O. Hoch, Constantin Lotsch, Bettina V. Johrendt, Dirk |
description | The all‐solid‐state battery (ASSB) is a promising candidate for electrochemical energy storage. In view of the limited availability of lithium, however, alternative systems based on earth‐abundant and inexpensive elements are urgently sought. Besides well‐studied sodium compounds, potassium‐based systems offer the advantage of low cost and a large electrochemical window, but are hardly explored. Here we report the synthesis and crystal structure of K‐ion conducting T5 KSi2P3 inspired by recent discoveries of fast ion conductors in alkaline phosphidosilicates. KSi2P3 is composed of SiP4 tetrahedra forming interpenetrating networks of large T5 supertetrahedra. The compound passes through a reconstructive phase transition from the known T3 to the new tetragonal T5 polymorph at 1020 °C with enantiotropic displacive phase transitions upon cooling at about 155 °C and 80 °C. The potassium ions are located in large channels between the T5 supertetrahedral networks and show facile movement through the structure. The bulk ionic conductivity is up to 2.6×10−4 S cm−1 at 25 °C with an average activation energy of 0.20 eV. This is remarkably high for a potassium ion conductor at room temperature, and marks KSi2P3 as the first non‐oxide solid potassium ion conductor.
Size matters: Only a structure with large T5 supertetrahedra enables fast K+‐ion conduction in the polymorphic phosphidosilicate KSi2P3. |
doi_str_mv | 10.1002/anie.202101187 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8252096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535464570</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3257-82098243d4d8404d8ee223c91febabc3d52bf9aa285015a3b75a0ef413e65fdf3</originalsourceid><addsrcrecordid>eNpVkd9KwzAUxoMoTqe3Xge87kxymjW7EcbYdCg6UK9D2qRrRtvUplV25yP4jD6JkY2BN-cP5-N3PvgQuqJkRAlhN6q2ZsQIo4RSkRyhM8oZjSBJ4DjMMUCUCE4H6Nz7TdALQcanaACQQMwBzpBeuXJbubYprK-wqjVeKN_hleuU97avfr6-l67GM1frPutsGG2Nu8LgV45f-sa0nelaVRjdqhKvCucDSDtvS5upzuCHF8tWcIFOclV6c7nvQ_S2mL_O7qPH57vlbPoYrYHxJBKMTASLQcdaxCQUYxiDbEJzk6o0A81Zmk-UYoITyhWkCVfE5DEFM-a5zmGIbnfcpk8rozNTB2-lbFpbqXYrnbLy_6W2hVy7DykYD7_HAXC9B7TuvTe-kxvXt3XwLBkHHo9jnpCgmuxUn7Y02wOeEvkXifyLRB4ikdOn5fywwS_1EoNm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535464570</pqid></control><display><type>article</type><title>Polymorphism and Fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Haffner, Arthur ; Hatz, Anna‐Katharina ; Zeman, Otto E. O. ; Hoch, Constantin ; Lotsch, Bettina V. ; Johrendt, Dirk</creator><creatorcontrib>Haffner, Arthur ; Hatz, Anna‐Katharina ; Zeman, Otto E. O. ; Hoch, Constantin ; Lotsch, Bettina V. ; Johrendt, Dirk</creatorcontrib><description>The all‐solid‐state battery (ASSB) is a promising candidate for electrochemical energy storage. In view of the limited availability of lithium, however, alternative systems based on earth‐abundant and inexpensive elements are urgently sought. Besides well‐studied sodium compounds, potassium‐based systems offer the advantage of low cost and a large electrochemical window, but are hardly explored. Here we report the synthesis and crystal structure of K‐ion conducting T5 KSi2P3 inspired by recent discoveries of fast ion conductors in alkaline phosphidosilicates. KSi2P3 is composed of SiP4 tetrahedra forming interpenetrating networks of large T5 supertetrahedra. The compound passes through a reconstructive phase transition from the known T3 to the new tetragonal T5 polymorph at 1020 °C with enantiotropic displacive phase transitions upon cooling at about 155 °C and 80 °C. The potassium ions are located in large channels between the T5 supertetrahedral networks and show facile movement through the structure. The bulk ionic conductivity is up to 2.6×10−4 S cm−1 at 25 °C with an average activation energy of 0.20 eV. This is remarkably high for a potassium ion conductor at room temperature, and marks KSi2P3 as the first non‐oxide solid potassium ion conductor.
Size matters: Only a structure with large T5 supertetrahedra enables fast K+‐ion conduction in the polymorphic phosphidosilicate KSi2P3.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202101187</identifier><identifier>PMID: 33734533</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Communication ; Communications ; Conduction ; Conductors ; Crystal structure ; Electrochemistry ; Energy storage ; Interpenetrating networks ; ion conductivity ; Ion currents ; Lithium ; Phase transitions ; phosphidosilicate ; Polymorphism ; Potassium ; Room temperature ; Sodium compounds ; solid electrolyte ; supertetrahedra ; Tetrahedra</subject><ispartof>Angewandte Chemie International Edition, 2021-06, Vol.60 (24), p.13641-13646</ispartof><rights>2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5630-7691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids></links><search><creatorcontrib>Haffner, Arthur</creatorcontrib><creatorcontrib>Hatz, Anna‐Katharina</creatorcontrib><creatorcontrib>Zeman, Otto E. O.</creatorcontrib><creatorcontrib>Hoch, Constantin</creatorcontrib><creatorcontrib>Lotsch, Bettina V.</creatorcontrib><creatorcontrib>Johrendt, Dirk</creatorcontrib><title>Polymorphism and Fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3</title><title>Angewandte Chemie International Edition</title><description>The all‐solid‐state battery (ASSB) is a promising candidate for electrochemical energy storage. In view of the limited availability of lithium, however, alternative systems based on earth‐abundant and inexpensive elements are urgently sought. Besides well‐studied sodium compounds, potassium‐based systems offer the advantage of low cost and a large electrochemical window, but are hardly explored. Here we report the synthesis and crystal structure of K‐ion conducting T5 KSi2P3 inspired by recent discoveries of fast ion conductors in alkaline phosphidosilicates. KSi2P3 is composed of SiP4 tetrahedra forming interpenetrating networks of large T5 supertetrahedra. The compound passes through a reconstructive phase transition from the known T3 to the new tetragonal T5 polymorph at 1020 °C with enantiotropic displacive phase transitions upon cooling at about 155 °C and 80 °C. The potassium ions are located in large channels between the T5 supertetrahedral networks and show facile movement through the structure. The bulk ionic conductivity is up to 2.6×10−4 S cm−1 at 25 °C with an average activation energy of 0.20 eV. This is remarkably high for a potassium ion conductor at room temperature, and marks KSi2P3 as the first non‐oxide solid potassium ion conductor.
Size matters: Only a structure with large T5 supertetrahedra enables fast K+‐ion conduction in the polymorphic phosphidosilicate KSi2P3.</description><subject>Communication</subject><subject>Communications</subject><subject>Conduction</subject><subject>Conductors</subject><subject>Crystal structure</subject><subject>Electrochemistry</subject><subject>Energy storage</subject><subject>Interpenetrating networks</subject><subject>ion conductivity</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Phase transitions</subject><subject>phosphidosilicate</subject><subject>Polymorphism</subject><subject>Potassium</subject><subject>Room temperature</subject><subject>Sodium compounds</subject><subject>solid electrolyte</subject><subject>supertetrahedra</subject><subject>Tetrahedra</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpVkd9KwzAUxoMoTqe3Xge87kxymjW7EcbYdCg6UK9D2qRrRtvUplV25yP4jD6JkY2BN-cP5-N3PvgQuqJkRAlhN6q2ZsQIo4RSkRyhM8oZjSBJ4DjMMUCUCE4H6Nz7TdALQcanaACQQMwBzpBeuXJbubYprK-wqjVeKN_hleuU97avfr6-l67GM1frPutsGG2Nu8LgV45f-sa0nelaVRjdqhKvCucDSDtvS5upzuCHF8tWcIFOclV6c7nvQ_S2mL_O7qPH57vlbPoYrYHxJBKMTASLQcdaxCQUYxiDbEJzk6o0A81Zmk-UYoITyhWkCVfE5DEFM-a5zmGIbnfcpk8rozNTB2-lbFpbqXYrnbLy_6W2hVy7DykYD7_HAXC9B7TuvTe-kxvXt3XwLBkHHo9jnpCgmuxUn7Y02wOeEvkXifyLRB4ikdOn5fywwS_1EoNm</recordid><startdate>20210607</startdate><enddate>20210607</enddate><creator>Haffner, Arthur</creator><creator>Hatz, Anna‐Katharina</creator><creator>Zeman, Otto E. O.</creator><creator>Hoch, Constantin</creator><creator>Lotsch, Bettina V.</creator><creator>Johrendt, Dirk</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>7TM</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5630-7691</orcidid></search><sort><creationdate>20210607</creationdate><title>Polymorphism and Fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3</title><author>Haffner, Arthur ; Hatz, Anna‐Katharina ; Zeman, Otto E. O. ; Hoch, Constantin ; Lotsch, Bettina V. ; Johrendt, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3257-82098243d4d8404d8ee223c91febabc3d52bf9aa285015a3b75a0ef413e65fdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Communication</topic><topic>Communications</topic><topic>Conduction</topic><topic>Conductors</topic><topic>Crystal structure</topic><topic>Electrochemistry</topic><topic>Energy storage</topic><topic>Interpenetrating networks</topic><topic>ion conductivity</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Phase transitions</topic><topic>phosphidosilicate</topic><topic>Polymorphism</topic><topic>Potassium</topic><topic>Room temperature</topic><topic>Sodium compounds</topic><topic>solid electrolyte</topic><topic>supertetrahedra</topic><topic>Tetrahedra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haffner, Arthur</creatorcontrib><creatorcontrib>Hatz, Anna‐Katharina</creatorcontrib><creatorcontrib>Zeman, Otto E. O.</creatorcontrib><creatorcontrib>Hoch, Constantin</creatorcontrib><creatorcontrib>Lotsch, Bettina V.</creatorcontrib><creatorcontrib>Johrendt, Dirk</creatorcontrib><collection>Wiley Open Access Journals</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haffner, Arthur</au><au>Hatz, Anna‐Katharina</au><au>Zeman, Otto E. O.</au><au>Hoch, Constantin</au><au>Lotsch, Bettina V.</au><au>Johrendt, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymorphism and Fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2021-06-07</date><risdate>2021</risdate><volume>60</volume><issue>24</issue><spage>13641</spage><epage>13646</epage><pages>13641-13646</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The all‐solid‐state battery (ASSB) is a promising candidate for electrochemical energy storage. In view of the limited availability of lithium, however, alternative systems based on earth‐abundant and inexpensive elements are urgently sought. Besides well‐studied sodium compounds, potassium‐based systems offer the advantage of low cost and a large electrochemical window, but are hardly explored. Here we report the synthesis and crystal structure of K‐ion conducting T5 KSi2P3 inspired by recent discoveries of fast ion conductors in alkaline phosphidosilicates. KSi2P3 is composed of SiP4 tetrahedra forming interpenetrating networks of large T5 supertetrahedra. The compound passes through a reconstructive phase transition from the known T3 to the new tetragonal T5 polymorph at 1020 °C with enantiotropic displacive phase transitions upon cooling at about 155 °C and 80 °C. The potassium ions are located in large channels between the T5 supertetrahedral networks and show facile movement through the structure. The bulk ionic conductivity is up to 2.6×10−4 S cm−1 at 25 °C with an average activation energy of 0.20 eV. This is remarkably high for a potassium ion conductor at room temperature, and marks KSi2P3 as the first non‐oxide solid potassium ion conductor.
Size matters: Only a structure with large T5 supertetrahedra enables fast K+‐ion conduction in the polymorphic phosphidosilicate KSi2P3.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33734533</pmid><doi>10.1002/anie.202101187</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-5630-7691</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-06, Vol.60 (24), p.13641-13646 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8252096 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Communication Communications Conduction Conductors Crystal structure Electrochemistry Energy storage Interpenetrating networks ion conductivity Ion currents Lithium Phase transitions phosphidosilicate Polymorphism Potassium Room temperature Sodium compounds solid electrolyte supertetrahedra Tetrahedra |
title | Polymorphism and Fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymorphism%20and%20Fast%20Potassium%E2%80%90Ion%20Conduction%20in%20the%20T5%20Supertetrahedral%20Phosphidosilicate%20KSi2P3&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Haffner,%20Arthur&rft.date=2021-06-07&rft.volume=60&rft.issue=24&rft.spage=13641&rft.epage=13646&rft.pages=13641-13646&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202101187&rft_dat=%3Cproquest_pubme%3E2535464570%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g3257-82098243d4d8404d8ee223c91febabc3d52bf9aa285015a3b75a0ef413e65fdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535464570&rft_id=info:pmid/33734533&rfr_iscdi=true |