Loading…

Polymorphism and Fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3

The all‐solid‐state battery (ASSB) is a promising candidate for electrochemical energy storage. In view of the limited availability of lithium, however, alternative systems based on earth‐abundant and inexpensive elements are urgently sought. Besides well‐studied sodium compounds, potassium‐based sy...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2021-06, Vol.60 (24), p.13641-13646
Main Authors: Haffner, Arthur, Hatz, Anna‐Katharina, Zeman, Otto E. O., Hoch, Constantin, Lotsch, Bettina V., Johrendt, Dirk
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 13646
container_issue 24
container_start_page 13641
container_title Angewandte Chemie International Edition
container_volume 60
creator Haffner, Arthur
Hatz, Anna‐Katharina
Zeman, Otto E. O.
Hoch, Constantin
Lotsch, Bettina V.
Johrendt, Dirk
description The all‐solid‐state battery (ASSB) is a promising candidate for electrochemical energy storage. In view of the limited availability of lithium, however, alternative systems based on earth‐abundant and inexpensive elements are urgently sought. Besides well‐studied sodium compounds, potassium‐based systems offer the advantage of low cost and a large electrochemical window, but are hardly explored. Here we report the synthesis and crystal structure of K‐ion conducting T5 KSi2P3 inspired by recent discoveries of fast ion conductors in alkaline phosphidosilicates. KSi2P3 is composed of SiP4 tetrahedra forming interpenetrating networks of large T5 supertetrahedra. The compound passes through a reconstructive phase transition from the known T3 to the new tetragonal T5 polymorph at 1020 °C with enantiotropic displacive phase transitions upon cooling at about 155 °C and 80 °C. The potassium ions are located in large channels between the T5 supertetrahedral networks and show facile movement through the structure. The bulk ionic conductivity is up to 2.6×10−4 S cm−1 at 25 °C with an average activation energy of 0.20 eV. This is remarkably high for a potassium ion conductor at room temperature, and marks KSi2P3 as the first non‐oxide solid potassium ion conductor. Size matters: Only a structure with large T5 supertetrahedra enables fast K+‐ion conduction in the polymorphic phosphidosilicate KSi2P3.
doi_str_mv 10.1002/anie.202101187
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8252096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535464570</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3257-82098243d4d8404d8ee223c91febabc3d52bf9aa285015a3b75a0ef413e65fdf3</originalsourceid><addsrcrecordid>eNpVkd9KwzAUxoMoTqe3Xge87kxymjW7EcbYdCg6UK9D2qRrRtvUplV25yP4jD6JkY2BN-cP5-N3PvgQuqJkRAlhN6q2ZsQIo4RSkRyhM8oZjSBJ4DjMMUCUCE4H6Nz7TdALQcanaACQQMwBzpBeuXJbubYprK-wqjVeKN_hleuU97avfr6-l67GM1frPutsGG2Nu8LgV45f-sa0nelaVRjdqhKvCucDSDtvS5upzuCHF8tWcIFOclV6c7nvQ_S2mL_O7qPH57vlbPoYrYHxJBKMTASLQcdaxCQUYxiDbEJzk6o0A81Zmk-UYoITyhWkCVfE5DEFM-a5zmGIbnfcpk8rozNTB2-lbFpbqXYrnbLy_6W2hVy7DykYD7_HAXC9B7TuvTe-kxvXt3XwLBkHHo9jnpCgmuxUn7Y02wOeEvkXifyLRB4ikdOn5fywwS_1EoNm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535464570</pqid></control><display><type>article</type><title>Polymorphism and Fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Haffner, Arthur ; Hatz, Anna‐Katharina ; Zeman, Otto E. O. ; Hoch, Constantin ; Lotsch, Bettina V. ; Johrendt, Dirk</creator><creatorcontrib>Haffner, Arthur ; Hatz, Anna‐Katharina ; Zeman, Otto E. O. ; Hoch, Constantin ; Lotsch, Bettina V. ; Johrendt, Dirk</creatorcontrib><description>The all‐solid‐state battery (ASSB) is a promising candidate for electrochemical energy storage. In view of the limited availability of lithium, however, alternative systems based on earth‐abundant and inexpensive elements are urgently sought. Besides well‐studied sodium compounds, potassium‐based systems offer the advantage of low cost and a large electrochemical window, but are hardly explored. Here we report the synthesis and crystal structure of K‐ion conducting T5 KSi2P3 inspired by recent discoveries of fast ion conductors in alkaline phosphidosilicates. KSi2P3 is composed of SiP4 tetrahedra forming interpenetrating networks of large T5 supertetrahedra. The compound passes through a reconstructive phase transition from the known T3 to the new tetragonal T5 polymorph at 1020 °C with enantiotropic displacive phase transitions upon cooling at about 155 °C and 80 °C. The potassium ions are located in large channels between the T5 supertetrahedral networks and show facile movement through the structure. The bulk ionic conductivity is up to 2.6×10−4 S cm−1 at 25 °C with an average activation energy of 0.20 eV. This is remarkably high for a potassium ion conductor at room temperature, and marks KSi2P3 as the first non‐oxide solid potassium ion conductor. Size matters: Only a structure with large T5 supertetrahedra enables fast K+‐ion conduction in the polymorphic phosphidosilicate KSi2P3.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202101187</identifier><identifier>PMID: 33734533</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Communication ; Communications ; Conduction ; Conductors ; Crystal structure ; Electrochemistry ; Energy storage ; Interpenetrating networks ; ion conductivity ; Ion currents ; Lithium ; Phase transitions ; phosphidosilicate ; Polymorphism ; Potassium ; Room temperature ; Sodium compounds ; solid electrolyte ; supertetrahedra ; Tetrahedra</subject><ispartof>Angewandte Chemie International Edition, 2021-06, Vol.60 (24), p.13641-13646</ispartof><rights>2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5630-7691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids></links><search><creatorcontrib>Haffner, Arthur</creatorcontrib><creatorcontrib>Hatz, Anna‐Katharina</creatorcontrib><creatorcontrib>Zeman, Otto E. O.</creatorcontrib><creatorcontrib>Hoch, Constantin</creatorcontrib><creatorcontrib>Lotsch, Bettina V.</creatorcontrib><creatorcontrib>Johrendt, Dirk</creatorcontrib><title>Polymorphism and Fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3</title><title>Angewandte Chemie International Edition</title><description>The all‐solid‐state battery (ASSB) is a promising candidate for electrochemical energy storage. In view of the limited availability of lithium, however, alternative systems based on earth‐abundant and inexpensive elements are urgently sought. Besides well‐studied sodium compounds, potassium‐based systems offer the advantage of low cost and a large electrochemical window, but are hardly explored. Here we report the synthesis and crystal structure of K‐ion conducting T5 KSi2P3 inspired by recent discoveries of fast ion conductors in alkaline phosphidosilicates. KSi2P3 is composed of SiP4 tetrahedra forming interpenetrating networks of large T5 supertetrahedra. The compound passes through a reconstructive phase transition from the known T3 to the new tetragonal T5 polymorph at 1020 °C with enantiotropic displacive phase transitions upon cooling at about 155 °C and 80 °C. The potassium ions are located in large channels between the T5 supertetrahedral networks and show facile movement through the structure. The bulk ionic conductivity is up to 2.6×10−4 S cm−1 at 25 °C with an average activation energy of 0.20 eV. This is remarkably high for a potassium ion conductor at room temperature, and marks KSi2P3 as the first non‐oxide solid potassium ion conductor. Size matters: Only a structure with large T5 supertetrahedra enables fast K+‐ion conduction in the polymorphic phosphidosilicate KSi2P3.</description><subject>Communication</subject><subject>Communications</subject><subject>Conduction</subject><subject>Conductors</subject><subject>Crystal structure</subject><subject>Electrochemistry</subject><subject>Energy storage</subject><subject>Interpenetrating networks</subject><subject>ion conductivity</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Phase transitions</subject><subject>phosphidosilicate</subject><subject>Polymorphism</subject><subject>Potassium</subject><subject>Room temperature</subject><subject>Sodium compounds</subject><subject>solid electrolyte</subject><subject>supertetrahedra</subject><subject>Tetrahedra</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpVkd9KwzAUxoMoTqe3Xge87kxymjW7EcbYdCg6UK9D2qRrRtvUplV25yP4jD6JkY2BN-cP5-N3PvgQuqJkRAlhN6q2ZsQIo4RSkRyhM8oZjSBJ4DjMMUCUCE4H6Nz7TdALQcanaACQQMwBzpBeuXJbubYprK-wqjVeKN_hleuU97avfr6-l67GM1frPutsGG2Nu8LgV45f-sa0nelaVRjdqhKvCucDSDtvS5upzuCHF8tWcIFOclV6c7nvQ_S2mL_O7qPH57vlbPoYrYHxJBKMTASLQcdaxCQUYxiDbEJzk6o0A81Zmk-UYoITyhWkCVfE5DEFM-a5zmGIbnfcpk8rozNTB2-lbFpbqXYrnbLy_6W2hVy7DykYD7_HAXC9B7TuvTe-kxvXt3XwLBkHHo9jnpCgmuxUn7Y02wOeEvkXifyLRB4ikdOn5fywwS_1EoNm</recordid><startdate>20210607</startdate><enddate>20210607</enddate><creator>Haffner, Arthur</creator><creator>Hatz, Anna‐Katharina</creator><creator>Zeman, Otto E. O.</creator><creator>Hoch, Constantin</creator><creator>Lotsch, Bettina V.</creator><creator>Johrendt, Dirk</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>7TM</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5630-7691</orcidid></search><sort><creationdate>20210607</creationdate><title>Polymorphism and Fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3</title><author>Haffner, Arthur ; Hatz, Anna‐Katharina ; Zeman, Otto E. O. ; Hoch, Constantin ; Lotsch, Bettina V. ; Johrendt, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3257-82098243d4d8404d8ee223c91febabc3d52bf9aa285015a3b75a0ef413e65fdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Communication</topic><topic>Communications</topic><topic>Conduction</topic><topic>Conductors</topic><topic>Crystal structure</topic><topic>Electrochemistry</topic><topic>Energy storage</topic><topic>Interpenetrating networks</topic><topic>ion conductivity</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Phase transitions</topic><topic>phosphidosilicate</topic><topic>Polymorphism</topic><topic>Potassium</topic><topic>Room temperature</topic><topic>Sodium compounds</topic><topic>solid electrolyte</topic><topic>supertetrahedra</topic><topic>Tetrahedra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haffner, Arthur</creatorcontrib><creatorcontrib>Hatz, Anna‐Katharina</creatorcontrib><creatorcontrib>Zeman, Otto E. O.</creatorcontrib><creatorcontrib>Hoch, Constantin</creatorcontrib><creatorcontrib>Lotsch, Bettina V.</creatorcontrib><creatorcontrib>Johrendt, Dirk</creatorcontrib><collection>Wiley Open Access Journals</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haffner, Arthur</au><au>Hatz, Anna‐Katharina</au><au>Zeman, Otto E. O.</au><au>Hoch, Constantin</au><au>Lotsch, Bettina V.</au><au>Johrendt, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymorphism and Fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2021-06-07</date><risdate>2021</risdate><volume>60</volume><issue>24</issue><spage>13641</spage><epage>13646</epage><pages>13641-13646</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The all‐solid‐state battery (ASSB) is a promising candidate for electrochemical energy storage. In view of the limited availability of lithium, however, alternative systems based on earth‐abundant and inexpensive elements are urgently sought. Besides well‐studied sodium compounds, potassium‐based systems offer the advantage of low cost and a large electrochemical window, but are hardly explored. Here we report the synthesis and crystal structure of K‐ion conducting T5 KSi2P3 inspired by recent discoveries of fast ion conductors in alkaline phosphidosilicates. KSi2P3 is composed of SiP4 tetrahedra forming interpenetrating networks of large T5 supertetrahedra. The compound passes through a reconstructive phase transition from the known T3 to the new tetragonal T5 polymorph at 1020 °C with enantiotropic displacive phase transitions upon cooling at about 155 °C and 80 °C. The potassium ions are located in large channels between the T5 supertetrahedral networks and show facile movement through the structure. The bulk ionic conductivity is up to 2.6×10−4 S cm−1 at 25 °C with an average activation energy of 0.20 eV. This is remarkably high for a potassium ion conductor at room temperature, and marks KSi2P3 as the first non‐oxide solid potassium ion conductor. Size matters: Only a structure with large T5 supertetrahedra enables fast K+‐ion conduction in the polymorphic phosphidosilicate KSi2P3.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33734533</pmid><doi>10.1002/anie.202101187</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-5630-7691</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2021-06, Vol.60 (24), p.13641-13646
issn 1433-7851
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8252096
source Wiley-Blackwell Read & Publish Collection
subjects Communication
Communications
Conduction
Conductors
Crystal structure
Electrochemistry
Energy storage
Interpenetrating networks
ion conductivity
Ion currents
Lithium
Phase transitions
phosphidosilicate
Polymorphism
Potassium
Room temperature
Sodium compounds
solid electrolyte
supertetrahedra
Tetrahedra
title Polymorphism and Fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymorphism%20and%20Fast%20Potassium%E2%80%90Ion%20Conduction%20in%20the%20T5%20Supertetrahedral%20Phosphidosilicate%20KSi2P3&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Haffner,%20Arthur&rft.date=2021-06-07&rft.volume=60&rft.issue=24&rft.spage=13641&rft.epage=13646&rft.pages=13641-13646&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202101187&rft_dat=%3Cproquest_pubme%3E2535464570%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g3257-82098243d4d8404d8ee223c91febabc3d52bf9aa285015a3b75a0ef413e65fdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535464570&rft_id=info:pmid/33734533&rfr_iscdi=true