Loading…
Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective immunity
Chimeric antigen receptor (CAR) T cell therapy has led to impressive clinical responses in patients with hematological malignancies; however, its effectiveness in patients with solid tumors has been limited. While CAR T cells for the treatment of advanced prostate and pancreas cancer, including thos...
Saved in:
Published in: | Molecular therapy 2021-07, Vol.29 (7), p.2335-2349 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c459t-f729117eeaf1c4094bafa3b27991b8284590d7c6d06dec66776dfc1b5d8f05263 |
---|---|
cites | cdi_FETCH-LOGICAL-c459t-f729117eeaf1c4094bafa3b27991b8284590d7c6d06dec66776dfc1b5d8f05263 |
container_end_page | 2349 |
container_issue | 7 |
container_start_page | 2335 |
container_title | Molecular therapy |
container_volume | 29 |
creator | Murad, John P. Tilakawardane, Dileshni Park, Anthony K. Lopez, Lupita S. Young, Cari A. Gibson, Jackson Yamaguchi, Yukiko Lee, Hee Jun Kennewick, Kelly T. Gittins, Brenna J. Chang, Wen-Chung Tran, Chau P. Martinez, Catalina Wu, Anna M. Reiter, Robert E. Dorff, Tanya B. Forman, Stephen J. Priceman, Saul J. |
description | Chimeric antigen receptor (CAR) T cell therapy has led to impressive clinical responses in patients with hematological malignancies; however, its effectiveness in patients with solid tumors has been limited. While CAR T cells for the treatment of advanced prostate and pancreas cancer, including those targeting prostate stem cell antigen (PSCA), are being clinically evaluated and are anticipated to show bioactivity, their safety and the impact of the immunosuppressive tumor microenvironment (TME) have not been faithfully explored preclinically. Using a novel human PSCA knockin (hPSCA-KI) immunocompetent mouse model, we evaluated the safety and therapeutic efficacy of PSCA-CAR T cells. We demonstrated that cyclophosphamide (Cy) pre-conditioning significantly modified the immunosuppressive TME and was required to uncover the efficacy of PSCA-CAR T cells in metastatic prostate and pancreas cancer models, with no observed toxicities in normal tissues with endogenous expression of PSCA. This combination dampened the immunosuppressive TME, generated pro-inflammatory myeloid and T cell signatures in tumors, and enhanced the recruitment of antigen-presenting cells, as well as endogenous and adoptively transferred T cells, resulting in long-term anti-tumor immunity.
[Display omitted]
Priceman, Murad, and colleagues describe an immunocompetent model that demonstrates the safety and efficacy of CAR T cells for the treatment of PSCA+ solid tumors. Importantly, CAR T cell treatment with cyclophosphamide pre-conditioning provides pro-inflammatory immune modulation resulting in reversion of local T cell exclusion and promotion of protective anti-tumor immunity. |
doi_str_mv | 10.1016/j.ymthe.2021.02.024 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8261088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001621001271</els_id><sourcerecordid>2495408435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-f729117eeaf1c4094bafa3b27991b8284590d7c6d06dec66776dfc1b5d8f05263</originalsourceid><addsrcrecordid>eNp9kd2KEzEUx4Mo7oc-gSC59GZqkslkZi4UlrLrCiuK1OuQSU7alJmkJplC38Zn8clM7Vr0RjiQA_md__n4I_SKkgUlVLzdLg5T3sCCEUYXhJXgT9AlbVhTkZI_PedUXKCrlLYlo00vnqOLuha85Y24RLsvESodvHHZBe_8Gk_BOOsg4aKNV59ucQ4Y_EZ5DTiF0Rmc5ylEvLz5ilc_f2gYRwzWOq30AStvCmzCGnyYE97FkEFntwfspmn2Lh9eoGdWjQlePr7X6Nvd7Wp5Xz18_vBxefNQad70ubIt6yltAZSlmpOeD8qqemBt39OhY12BiGm1MEQY0EK0rTBW06ExnSUNE_U1en_S3c3DBEaDz1GNchfdpOJBBuXkvz_ebeQ67GXHBCVdVwTePArE8H2GlOXk0nFb5aHsJhnvG046XjcFrU-ojiGlCPbchhJ59Epu5W-v5NErSVgJXqpe_z3hueaPOQV4dwKg3GnvIMqkHRQfjIvlqtIE998GvwBvVqnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495408435</pqid></control><display><type>article</type><title>Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective immunity</title><source>Open Access: PubMed Central</source><creator>Murad, John P. ; Tilakawardane, Dileshni ; Park, Anthony K. ; Lopez, Lupita S. ; Young, Cari A. ; Gibson, Jackson ; Yamaguchi, Yukiko ; Lee, Hee Jun ; Kennewick, Kelly T. ; Gittins, Brenna J. ; Chang, Wen-Chung ; Tran, Chau P. ; Martinez, Catalina ; Wu, Anna M. ; Reiter, Robert E. ; Dorff, Tanya B. ; Forman, Stephen J. ; Priceman, Saul J.</creator><creatorcontrib>Murad, John P. ; Tilakawardane, Dileshni ; Park, Anthony K. ; Lopez, Lupita S. ; Young, Cari A. ; Gibson, Jackson ; Yamaguchi, Yukiko ; Lee, Hee Jun ; Kennewick, Kelly T. ; Gittins, Brenna J. ; Chang, Wen-Chung ; Tran, Chau P. ; Martinez, Catalina ; Wu, Anna M. ; Reiter, Robert E. ; Dorff, Tanya B. ; Forman, Stephen J. ; Priceman, Saul J.</creatorcontrib><description>Chimeric antigen receptor (CAR) T cell therapy has led to impressive clinical responses in patients with hematological malignancies; however, its effectiveness in patients with solid tumors has been limited. While CAR T cells for the treatment of advanced prostate and pancreas cancer, including those targeting prostate stem cell antigen (PSCA), are being clinically evaluated and are anticipated to show bioactivity, their safety and the impact of the immunosuppressive tumor microenvironment (TME) have not been faithfully explored preclinically. Using a novel human PSCA knockin (hPSCA-KI) immunocompetent mouse model, we evaluated the safety and therapeutic efficacy of PSCA-CAR T cells. We demonstrated that cyclophosphamide (Cy) pre-conditioning significantly modified the immunosuppressive TME and was required to uncover the efficacy of PSCA-CAR T cells in metastatic prostate and pancreas cancer models, with no observed toxicities in normal tissues with endogenous expression of PSCA. This combination dampened the immunosuppressive TME, generated pro-inflammatory myeloid and T cell signatures in tumors, and enhanced the recruitment of antigen-presenting cells, as well as endogenous and adoptively transferred T cells, resulting in long-term anti-tumor immunity.
[Display omitted]
Priceman, Murad, and colleagues describe an immunocompetent model that demonstrates the safety and efficacy of CAR T cells for the treatment of PSCA+ solid tumors. Importantly, CAR T cell treatment with cyclophosphamide pre-conditioning provides pro-inflammatory immune modulation resulting in reversion of local T cell exclusion and promotion of protective anti-tumor immunity.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2021.02.024</identifier><identifier>PMID: 33647456</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adoptive cellular immunotherapy ; Animals ; Antigens, Neoplasm - genetics ; Apoptosis ; Cell Proliferation ; chimeric antigen receptor ; cyclophosphamide ; Cyclophosphamide - pharmacology ; GPI-Linked Proteins - antagonists & inhibitors ; GPI-Linked Proteins - genetics ; Humans ; immunosuppression ; Immunotherapy, Adoptive - methods ; Male ; Mice ; Mice, Inbred C57BL ; Myeloablative Agonists - pharmacology ; Neoplasm Proteins - antagonists & inhibitors ; Neoplasm Proteins - genetics ; Original ; pancreatic cancer ; Pancreatic Neoplasms - immunology ; Pancreatic Neoplasms - pathology ; Pancreatic Neoplasms - therapy ; pre-conditioning ; prostate cancer ; prostate stem cell antigen ; Prostatic Neoplasms - immunology ; Prostatic Neoplasms - pathology ; Prostatic Neoplasms - therapy ; Tumor Cells, Cultured ; Tumor Microenvironment ; Xenograft Model Antitumor Assays</subject><ispartof>Molecular therapy, 2021-07, Vol.29 (7), p.2335-2349</ispartof><rights>2021 The Author(s)</rights><rights>Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-f729117eeaf1c4094bafa3b27991b8284590d7c6d06dec66776dfc1b5d8f05263</citedby><cites>FETCH-LOGICAL-c459t-f729117eeaf1c4094bafa3b27991b8284590d7c6d06dec66776dfc1b5d8f05263</cites><orcidid>0000-0003-0637-2414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261088/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261088/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33647456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murad, John P.</creatorcontrib><creatorcontrib>Tilakawardane, Dileshni</creatorcontrib><creatorcontrib>Park, Anthony K.</creatorcontrib><creatorcontrib>Lopez, Lupita S.</creatorcontrib><creatorcontrib>Young, Cari A.</creatorcontrib><creatorcontrib>Gibson, Jackson</creatorcontrib><creatorcontrib>Yamaguchi, Yukiko</creatorcontrib><creatorcontrib>Lee, Hee Jun</creatorcontrib><creatorcontrib>Kennewick, Kelly T.</creatorcontrib><creatorcontrib>Gittins, Brenna J.</creatorcontrib><creatorcontrib>Chang, Wen-Chung</creatorcontrib><creatorcontrib>Tran, Chau P.</creatorcontrib><creatorcontrib>Martinez, Catalina</creatorcontrib><creatorcontrib>Wu, Anna M.</creatorcontrib><creatorcontrib>Reiter, Robert E.</creatorcontrib><creatorcontrib>Dorff, Tanya B.</creatorcontrib><creatorcontrib>Forman, Stephen J.</creatorcontrib><creatorcontrib>Priceman, Saul J.</creatorcontrib><title>Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective immunity</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Chimeric antigen receptor (CAR) T cell therapy has led to impressive clinical responses in patients with hematological malignancies; however, its effectiveness in patients with solid tumors has been limited. While CAR T cells for the treatment of advanced prostate and pancreas cancer, including those targeting prostate stem cell antigen (PSCA), are being clinically evaluated and are anticipated to show bioactivity, their safety and the impact of the immunosuppressive tumor microenvironment (TME) have not been faithfully explored preclinically. Using a novel human PSCA knockin (hPSCA-KI) immunocompetent mouse model, we evaluated the safety and therapeutic efficacy of PSCA-CAR T cells. We demonstrated that cyclophosphamide (Cy) pre-conditioning significantly modified the immunosuppressive TME and was required to uncover the efficacy of PSCA-CAR T cells in metastatic prostate and pancreas cancer models, with no observed toxicities in normal tissues with endogenous expression of PSCA. This combination dampened the immunosuppressive TME, generated pro-inflammatory myeloid and T cell signatures in tumors, and enhanced the recruitment of antigen-presenting cells, as well as endogenous and adoptively transferred T cells, resulting in long-term anti-tumor immunity.
[Display omitted]
Priceman, Murad, and colleagues describe an immunocompetent model that demonstrates the safety and efficacy of CAR T cells for the treatment of PSCA+ solid tumors. Importantly, CAR T cell treatment with cyclophosphamide pre-conditioning provides pro-inflammatory immune modulation resulting in reversion of local T cell exclusion and promotion of protective anti-tumor immunity.</description><subject>adoptive cellular immunotherapy</subject><subject>Animals</subject><subject>Antigens, Neoplasm - genetics</subject><subject>Apoptosis</subject><subject>Cell Proliferation</subject><subject>chimeric antigen receptor</subject><subject>cyclophosphamide</subject><subject>Cyclophosphamide - pharmacology</subject><subject>GPI-Linked Proteins - antagonists & inhibitors</subject><subject>GPI-Linked Proteins - genetics</subject><subject>Humans</subject><subject>immunosuppression</subject><subject>Immunotherapy, Adoptive - methods</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Myeloablative Agonists - pharmacology</subject><subject>Neoplasm Proteins - antagonists & inhibitors</subject><subject>Neoplasm Proteins - genetics</subject><subject>Original</subject><subject>pancreatic cancer</subject><subject>Pancreatic Neoplasms - immunology</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>Pancreatic Neoplasms - therapy</subject><subject>pre-conditioning</subject><subject>prostate cancer</subject><subject>prostate stem cell antigen</subject><subject>Prostatic Neoplasms - immunology</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Prostatic Neoplasms - therapy</subject><subject>Tumor Cells, Cultured</subject><subject>Tumor Microenvironment</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kd2KEzEUx4Mo7oc-gSC59GZqkslkZi4UlrLrCiuK1OuQSU7alJmkJplC38Zn8clM7Vr0RjiQA_md__n4I_SKkgUlVLzdLg5T3sCCEUYXhJXgT9AlbVhTkZI_PedUXKCrlLYlo00vnqOLuha85Y24RLsvESodvHHZBe_8Gk_BOOsg4aKNV59ucQ4Y_EZ5DTiF0Rmc5ylEvLz5ilc_f2gYRwzWOq30AStvCmzCGnyYE97FkEFntwfspmn2Lh9eoGdWjQlePr7X6Nvd7Wp5Xz18_vBxefNQad70ubIt6yltAZSlmpOeD8qqemBt39OhY12BiGm1MEQY0EK0rTBW06ExnSUNE_U1en_S3c3DBEaDz1GNchfdpOJBBuXkvz_ebeQ67GXHBCVdVwTePArE8H2GlOXk0nFb5aHsJhnvG046XjcFrU-ojiGlCPbchhJ59Epu5W-v5NErSVgJXqpe_z3hueaPOQV4dwKg3GnvIMqkHRQfjIvlqtIE998GvwBvVqnA</recordid><startdate>20210707</startdate><enddate>20210707</enddate><creator>Murad, John P.</creator><creator>Tilakawardane, Dileshni</creator><creator>Park, Anthony K.</creator><creator>Lopez, Lupita S.</creator><creator>Young, Cari A.</creator><creator>Gibson, Jackson</creator><creator>Yamaguchi, Yukiko</creator><creator>Lee, Hee Jun</creator><creator>Kennewick, Kelly T.</creator><creator>Gittins, Brenna J.</creator><creator>Chang, Wen-Chung</creator><creator>Tran, Chau P.</creator><creator>Martinez, Catalina</creator><creator>Wu, Anna M.</creator><creator>Reiter, Robert E.</creator><creator>Dorff, Tanya B.</creator><creator>Forman, Stephen J.</creator><creator>Priceman, Saul J.</creator><general>Elsevier Inc</general><general>American Society of Gene & Cell Therapy</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0637-2414</orcidid></search><sort><creationdate>20210707</creationdate><title>Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective immunity</title><author>Murad, John P. ; Tilakawardane, Dileshni ; Park, Anthony K. ; Lopez, Lupita S. ; Young, Cari A. ; Gibson, Jackson ; Yamaguchi, Yukiko ; Lee, Hee Jun ; Kennewick, Kelly T. ; Gittins, Brenna J. ; Chang, Wen-Chung ; Tran, Chau P. ; Martinez, Catalina ; Wu, Anna M. ; Reiter, Robert E. ; Dorff, Tanya B. ; Forman, Stephen J. ; Priceman, Saul J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-f729117eeaf1c4094bafa3b27991b8284590d7c6d06dec66776dfc1b5d8f05263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>adoptive cellular immunotherapy</topic><topic>Animals</topic><topic>Antigens, Neoplasm - genetics</topic><topic>Apoptosis</topic><topic>Cell Proliferation</topic><topic>chimeric antigen receptor</topic><topic>cyclophosphamide</topic><topic>Cyclophosphamide - pharmacology</topic><topic>GPI-Linked Proteins - antagonists & inhibitors</topic><topic>GPI-Linked Proteins - genetics</topic><topic>Humans</topic><topic>immunosuppression</topic><topic>Immunotherapy, Adoptive - methods</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Myeloablative Agonists - pharmacology</topic><topic>Neoplasm Proteins - antagonists & inhibitors</topic><topic>Neoplasm Proteins - genetics</topic><topic>Original</topic><topic>pancreatic cancer</topic><topic>Pancreatic Neoplasms - immunology</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>Pancreatic Neoplasms - therapy</topic><topic>pre-conditioning</topic><topic>prostate cancer</topic><topic>prostate stem cell antigen</topic><topic>Prostatic Neoplasms - immunology</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Prostatic Neoplasms - therapy</topic><topic>Tumor Cells, Cultured</topic><topic>Tumor Microenvironment</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murad, John P.</creatorcontrib><creatorcontrib>Tilakawardane, Dileshni</creatorcontrib><creatorcontrib>Park, Anthony K.</creatorcontrib><creatorcontrib>Lopez, Lupita S.</creatorcontrib><creatorcontrib>Young, Cari A.</creatorcontrib><creatorcontrib>Gibson, Jackson</creatorcontrib><creatorcontrib>Yamaguchi, Yukiko</creatorcontrib><creatorcontrib>Lee, Hee Jun</creatorcontrib><creatorcontrib>Kennewick, Kelly T.</creatorcontrib><creatorcontrib>Gittins, Brenna J.</creatorcontrib><creatorcontrib>Chang, Wen-Chung</creatorcontrib><creatorcontrib>Tran, Chau P.</creatorcontrib><creatorcontrib>Martinez, Catalina</creatorcontrib><creatorcontrib>Wu, Anna M.</creatorcontrib><creatorcontrib>Reiter, Robert E.</creatorcontrib><creatorcontrib>Dorff, Tanya B.</creatorcontrib><creatorcontrib>Forman, Stephen J.</creatorcontrib><creatorcontrib>Priceman, Saul J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murad, John P.</au><au>Tilakawardane, Dileshni</au><au>Park, Anthony K.</au><au>Lopez, Lupita S.</au><au>Young, Cari A.</au><au>Gibson, Jackson</au><au>Yamaguchi, Yukiko</au><au>Lee, Hee Jun</au><au>Kennewick, Kelly T.</au><au>Gittins, Brenna J.</au><au>Chang, Wen-Chung</au><au>Tran, Chau P.</au><au>Martinez, Catalina</au><au>Wu, Anna M.</au><au>Reiter, Robert E.</au><au>Dorff, Tanya B.</au><au>Forman, Stephen J.</au><au>Priceman, Saul J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective immunity</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2021-07-07</date><risdate>2021</risdate><volume>29</volume><issue>7</issue><spage>2335</spage><epage>2349</epage><pages>2335-2349</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Chimeric antigen receptor (CAR) T cell therapy has led to impressive clinical responses in patients with hematological malignancies; however, its effectiveness in patients with solid tumors has been limited. While CAR T cells for the treatment of advanced prostate and pancreas cancer, including those targeting prostate stem cell antigen (PSCA), are being clinically evaluated and are anticipated to show bioactivity, their safety and the impact of the immunosuppressive tumor microenvironment (TME) have not been faithfully explored preclinically. Using a novel human PSCA knockin (hPSCA-KI) immunocompetent mouse model, we evaluated the safety and therapeutic efficacy of PSCA-CAR T cells. We demonstrated that cyclophosphamide (Cy) pre-conditioning significantly modified the immunosuppressive TME and was required to uncover the efficacy of PSCA-CAR T cells in metastatic prostate and pancreas cancer models, with no observed toxicities in normal tissues with endogenous expression of PSCA. This combination dampened the immunosuppressive TME, generated pro-inflammatory myeloid and T cell signatures in tumors, and enhanced the recruitment of antigen-presenting cells, as well as endogenous and adoptively transferred T cells, resulting in long-term anti-tumor immunity.
[Display omitted]
Priceman, Murad, and colleagues describe an immunocompetent model that demonstrates the safety and efficacy of CAR T cells for the treatment of PSCA+ solid tumors. Importantly, CAR T cell treatment with cyclophosphamide pre-conditioning provides pro-inflammatory immune modulation resulting in reversion of local T cell exclusion and promotion of protective anti-tumor immunity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33647456</pmid><doi>10.1016/j.ymthe.2021.02.024</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0637-2414</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-0016 |
ispartof | Molecular therapy, 2021-07, Vol.29 (7), p.2335-2349 |
issn | 1525-0016 1525-0024 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8261088 |
source | Open Access: PubMed Central |
subjects | adoptive cellular immunotherapy Animals Antigens, Neoplasm - genetics Apoptosis Cell Proliferation chimeric antigen receptor cyclophosphamide Cyclophosphamide - pharmacology GPI-Linked Proteins - antagonists & inhibitors GPI-Linked Proteins - genetics Humans immunosuppression Immunotherapy, Adoptive - methods Male Mice Mice, Inbred C57BL Myeloablative Agonists - pharmacology Neoplasm Proteins - antagonists & inhibitors Neoplasm Proteins - genetics Original pancreatic cancer Pancreatic Neoplasms - immunology Pancreatic Neoplasms - pathology Pancreatic Neoplasms - therapy pre-conditioning prostate cancer prostate stem cell antigen Prostatic Neoplasms - immunology Prostatic Neoplasms - pathology Prostatic Neoplasms - therapy Tumor Cells, Cultured Tumor Microenvironment Xenograft Model Antitumor Assays |
title | Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective immunity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre-conditioning%20modifies%20the%20TME%20to%20enhance%20solid%20tumor%20CAR%20T%C2%A0cell%20efficacy%20and%20endogenous%20protective%20immunity&rft.jtitle=Molecular%20therapy&rft.au=Murad,%20John%20P.&rft.date=2021-07-07&rft.volume=29&rft.issue=7&rft.spage=2335&rft.epage=2349&rft.pages=2335-2349&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2021.02.024&rft_dat=%3Cproquest_pubme%3E2495408435%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-f729117eeaf1c4094bafa3b27991b8284590d7c6d06dec66776dfc1b5d8f05263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2495408435&rft_id=info:pmid/33647456&rfr_iscdi=true |