Loading…

Imaging Mass Spectrometry-Based Proteomic Analysis to Differentiate Melanocytic Nevi and Malignant Melanoma

The discrimination of malignant melanoma from benign nevi may be difficult in some cases. For this reason, immunohistological and molecular techniques are included in the differential diagnostic toolbox for these lesions. These methods are time consuming when applied subsequently and, in some cases,...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2021-06, Vol.13 (13), p.3197
Main Authors: Casadonte, Rita, Kriegsmann, Mark, Kriegsmann, Katharina, Hauk, Isabella, Meliß, Rolf R, Müller, Cornelia S L, Kriegsmann, Jörg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-236977b5409299335a81c4de8dc1bfec6211cff8a1273fd3b13587a736f2634e3
cites cdi_FETCH-LOGICAL-c421t-236977b5409299335a81c4de8dc1bfec6211cff8a1273fd3b13587a736f2634e3
container_end_page
container_issue 13
container_start_page 3197
container_title Cancers
container_volume 13
creator Casadonte, Rita
Kriegsmann, Mark
Kriegsmann, Katharina
Hauk, Isabella
Meliß, Rolf R
Müller, Cornelia S L
Kriegsmann, Jörg
description The discrimination of malignant melanoma from benign nevi may be difficult in some cases. For this reason, immunohistological and molecular techniques are included in the differential diagnostic toolbox for these lesions. These methods are time consuming when applied subsequently and, in some cases, no definitive diagnosis can be made. We studied both lesions by imaging mass spectrometry (IMS) in a large cohort ( = 203) to determine a different proteomic profile between cutaneous melanomas and melanocytic nevi. Sample preparation and instrument setting were tested to obtain optimal results in term of data quality and reproducibility. A proteomic signature was found by linear discriminant analysis to discern malignant melanoma from benign nevus ( = 113) with an overall accuracy of >98%. The prediction model was tested in an independent set ( = 90) reaching an overall accuracy of 93% in classifying melanoma from nevi. Statistical analysis of the IMS data revealed mass-to-charge ratio ( peaks which varied significantly (Area under the receiver operating characteristic curve > 0.7) between the two tissue types. To our knowledge, this is the largest IMS study of cutaneous melanoma and nevi performed up to now. Our findings clearly show that discrimination of melanocytic nevi from melanoma is possible by IMS.
doi_str_mv 10.3390/cancers13133197
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8267712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548400655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-236977b5409299335a81c4de8dc1bfec6211cff8a1273fd3b13587a736f2634e3</originalsourceid><addsrcrecordid>eNpdkU1vFDEMhiMEolXpmRsaiQuXofmaZHJBKuWrUgtIwDnyZpwlZSZZkmyl_fekdKlKfbElP35l-yXkOaOvhTD0xEF0mAsTTAhm9CNyyKnmvVJGPr5XH5DjUq5oi4ZppZ-SAyE5VaOUh-TX-QLrENfdJZTSfdugqzktWPOufwsFp-5rThXTElx3GmHelVC6mrp3wXvMGGuAit0lzhCT29VGfcbr0EGcmuAc1hFi3bcXeEaeeJgLHu_zEfnx4f33s0_9xZeP52enF72TnNWeC2W0Xg2SGm6MEAOMzMkJx8mxlUenOGPO-xEY18JPYsXEMGrQQnmuhERxRN7c6m62qwUn19bMMNtNDgvknU0Q7P-dGH7adbq2I1daM94EXu0Fcvq9xVLtEorDuZ2BaVssH-QoKVXD0NCXD9CrtM3tU38pw_Vo-A11cku5nErJ6O-WYdTeeGkfeNkmXty_4Y7_55z4A4oDnJI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549278925</pqid></control><display><type>article</type><title>Imaging Mass Spectrometry-Based Proteomic Analysis to Differentiate Melanocytic Nevi and Malignant Melanoma</title><source>PubMed Central(OpenAccess)</source><source>Publicly Available Content (ProQuest)</source><creator>Casadonte, Rita ; Kriegsmann, Mark ; Kriegsmann, Katharina ; Hauk, Isabella ; Meliß, Rolf R ; Müller, Cornelia S L ; Kriegsmann, Jörg</creator><creatorcontrib>Casadonte, Rita ; Kriegsmann, Mark ; Kriegsmann, Katharina ; Hauk, Isabella ; Meliß, Rolf R ; Müller, Cornelia S L ; Kriegsmann, Jörg</creatorcontrib><description>The discrimination of malignant melanoma from benign nevi may be difficult in some cases. For this reason, immunohistological and molecular techniques are included in the differential diagnostic toolbox for these lesions. These methods are time consuming when applied subsequently and, in some cases, no definitive diagnosis can be made. We studied both lesions by imaging mass spectrometry (IMS) in a large cohort ( = 203) to determine a different proteomic profile between cutaneous melanomas and melanocytic nevi. Sample preparation and instrument setting were tested to obtain optimal results in term of data quality and reproducibility. A proteomic signature was found by linear discriminant analysis to discern malignant melanoma from benign nevus ( = 113) with an overall accuracy of &gt;98%. The prediction model was tested in an independent set ( = 90) reaching an overall accuracy of 93% in classifying melanoma from nevi. Statistical analysis of the IMS data revealed mass-to-charge ratio ( peaks which varied significantly (Area under the receiver operating characteristic curve &gt; 0.7) between the two tissue types. To our knowledge, this is the largest IMS study of cutaneous melanoma and nevi performed up to now. Our findings clearly show that discrimination of melanocytic nevi from melanoma is possible by IMS.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers13133197</identifier><identifier>PMID: 34206844</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Antigens ; Classification ; Differential diagnosis ; Discriminant analysis ; Histology ; Ions ; Lesions ; Mass spectrometry ; Mass spectroscopy ; Melanoma ; Nevus ; Peptides ; Prediction models ; Principal components analysis ; Proteomics ; Reproducibility ; Scientific imaging ; Skin cancer ; Software ; Statistical analysis</subject><ispartof>Cancers, 2021-06, Vol.13 (13), p.3197</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-236977b5409299335a81c4de8dc1bfec6211cff8a1273fd3b13587a736f2634e3</citedby><cites>FETCH-LOGICAL-c421t-236977b5409299335a81c4de8dc1bfec6211cff8a1273fd3b13587a736f2634e3</cites><orcidid>0000-0002-9054-4786 ; 0000-0002-7319-3646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2549278925/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2549278925?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34206844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Casadonte, Rita</creatorcontrib><creatorcontrib>Kriegsmann, Mark</creatorcontrib><creatorcontrib>Kriegsmann, Katharina</creatorcontrib><creatorcontrib>Hauk, Isabella</creatorcontrib><creatorcontrib>Meliß, Rolf R</creatorcontrib><creatorcontrib>Müller, Cornelia S L</creatorcontrib><creatorcontrib>Kriegsmann, Jörg</creatorcontrib><title>Imaging Mass Spectrometry-Based Proteomic Analysis to Differentiate Melanocytic Nevi and Malignant Melanoma</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>The discrimination of malignant melanoma from benign nevi may be difficult in some cases. For this reason, immunohistological and molecular techniques are included in the differential diagnostic toolbox for these lesions. These methods are time consuming when applied subsequently and, in some cases, no definitive diagnosis can be made. We studied both lesions by imaging mass spectrometry (IMS) in a large cohort ( = 203) to determine a different proteomic profile between cutaneous melanomas and melanocytic nevi. Sample preparation and instrument setting were tested to obtain optimal results in term of data quality and reproducibility. A proteomic signature was found by linear discriminant analysis to discern malignant melanoma from benign nevus ( = 113) with an overall accuracy of &gt;98%. The prediction model was tested in an independent set ( = 90) reaching an overall accuracy of 93% in classifying melanoma from nevi. Statistical analysis of the IMS data revealed mass-to-charge ratio ( peaks which varied significantly (Area under the receiver operating characteristic curve &gt; 0.7) between the two tissue types. To our knowledge, this is the largest IMS study of cutaneous melanoma and nevi performed up to now. Our findings clearly show that discrimination of melanocytic nevi from melanoma is possible by IMS.</description><subject>Accuracy</subject><subject>Antigens</subject><subject>Classification</subject><subject>Differential diagnosis</subject><subject>Discriminant analysis</subject><subject>Histology</subject><subject>Ions</subject><subject>Lesions</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Melanoma</subject><subject>Nevus</subject><subject>Peptides</subject><subject>Prediction models</subject><subject>Principal components analysis</subject><subject>Proteomics</subject><subject>Reproducibility</subject><subject>Scientific imaging</subject><subject>Skin cancer</subject><subject>Software</subject><subject>Statistical analysis</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1vFDEMhiMEolXpmRsaiQuXofmaZHJBKuWrUgtIwDnyZpwlZSZZkmyl_fekdKlKfbElP35l-yXkOaOvhTD0xEF0mAsTTAhm9CNyyKnmvVJGPr5XH5DjUq5oi4ZppZ-SAyE5VaOUh-TX-QLrENfdJZTSfdugqzktWPOufwsFp-5rThXTElx3GmHelVC6mrp3wXvMGGuAit0lzhCT29VGfcbr0EGcmuAc1hFi3bcXeEaeeJgLHu_zEfnx4f33s0_9xZeP52enF72TnNWeC2W0Xg2SGm6MEAOMzMkJx8mxlUenOGPO-xEY18JPYsXEMGrQQnmuhERxRN7c6m62qwUn19bMMNtNDgvknU0Q7P-dGH7adbq2I1daM94EXu0Fcvq9xVLtEorDuZ2BaVssH-QoKVXD0NCXD9CrtM3tU38pw_Vo-A11cku5nErJ6O-WYdTeeGkfeNkmXty_4Y7_55z4A4oDnJI</recordid><startdate>20210626</startdate><enddate>20210626</enddate><creator>Casadonte, Rita</creator><creator>Kriegsmann, Mark</creator><creator>Kriegsmann, Katharina</creator><creator>Hauk, Isabella</creator><creator>Meliß, Rolf R</creator><creator>Müller, Cornelia S L</creator><creator>Kriegsmann, Jörg</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9054-4786</orcidid><orcidid>https://orcid.org/0000-0002-7319-3646</orcidid></search><sort><creationdate>20210626</creationdate><title>Imaging Mass Spectrometry-Based Proteomic Analysis to Differentiate Melanocytic Nevi and Malignant Melanoma</title><author>Casadonte, Rita ; Kriegsmann, Mark ; Kriegsmann, Katharina ; Hauk, Isabella ; Meliß, Rolf R ; Müller, Cornelia S L ; Kriegsmann, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-236977b5409299335a81c4de8dc1bfec6211cff8a1273fd3b13587a736f2634e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Antigens</topic><topic>Classification</topic><topic>Differential diagnosis</topic><topic>Discriminant analysis</topic><topic>Histology</topic><topic>Ions</topic><topic>Lesions</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Melanoma</topic><topic>Nevus</topic><topic>Peptides</topic><topic>Prediction models</topic><topic>Principal components analysis</topic><topic>Proteomics</topic><topic>Reproducibility</topic><topic>Scientific imaging</topic><topic>Skin cancer</topic><topic>Software</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casadonte, Rita</creatorcontrib><creatorcontrib>Kriegsmann, Mark</creatorcontrib><creatorcontrib>Kriegsmann, Katharina</creatorcontrib><creatorcontrib>Hauk, Isabella</creatorcontrib><creatorcontrib>Meliß, Rolf R</creatorcontrib><creatorcontrib>Müller, Cornelia S L</creatorcontrib><creatorcontrib>Kriegsmann, Jörg</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casadonte, Rita</au><au>Kriegsmann, Mark</au><au>Kriegsmann, Katharina</au><au>Hauk, Isabella</au><au>Meliß, Rolf R</au><au>Müller, Cornelia S L</au><au>Kriegsmann, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging Mass Spectrometry-Based Proteomic Analysis to Differentiate Melanocytic Nevi and Malignant Melanoma</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2021-06-26</date><risdate>2021</risdate><volume>13</volume><issue>13</issue><spage>3197</spage><pages>3197-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>The discrimination of malignant melanoma from benign nevi may be difficult in some cases. For this reason, immunohistological and molecular techniques are included in the differential diagnostic toolbox for these lesions. These methods are time consuming when applied subsequently and, in some cases, no definitive diagnosis can be made. We studied both lesions by imaging mass spectrometry (IMS) in a large cohort ( = 203) to determine a different proteomic profile between cutaneous melanomas and melanocytic nevi. Sample preparation and instrument setting were tested to obtain optimal results in term of data quality and reproducibility. A proteomic signature was found by linear discriminant analysis to discern malignant melanoma from benign nevus ( = 113) with an overall accuracy of &gt;98%. The prediction model was tested in an independent set ( = 90) reaching an overall accuracy of 93% in classifying melanoma from nevi. Statistical analysis of the IMS data revealed mass-to-charge ratio ( peaks which varied significantly (Area under the receiver operating characteristic curve &gt; 0.7) between the two tissue types. To our knowledge, this is the largest IMS study of cutaneous melanoma and nevi performed up to now. Our findings clearly show that discrimination of melanocytic nevi from melanoma is possible by IMS.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34206844</pmid><doi>10.3390/cancers13133197</doi><orcidid>https://orcid.org/0000-0002-9054-4786</orcidid><orcidid>https://orcid.org/0000-0002-7319-3646</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2021-06, Vol.13 (13), p.3197
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8267712
source PubMed Central(OpenAccess); Publicly Available Content (ProQuest)
subjects Accuracy
Antigens
Classification
Differential diagnosis
Discriminant analysis
Histology
Ions
Lesions
Mass spectrometry
Mass spectroscopy
Melanoma
Nevus
Peptides
Prediction models
Principal components analysis
Proteomics
Reproducibility
Scientific imaging
Skin cancer
Software
Statistical analysis
title Imaging Mass Spectrometry-Based Proteomic Analysis to Differentiate Melanocytic Nevi and Malignant Melanoma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20Mass%20Spectrometry-Based%20Proteomic%20Analysis%20to%20Differentiate%20Melanocytic%20Nevi%20and%20Malignant%20Melanoma&rft.jtitle=Cancers&rft.au=Casadonte,%20Rita&rft.date=2021-06-26&rft.volume=13&rft.issue=13&rft.spage=3197&rft.pages=3197-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers13133197&rft_dat=%3Cproquest_pubme%3E2548400655%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-236977b5409299335a81c4de8dc1bfec6211cff8a1273fd3b13587a736f2634e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2549278925&rft_id=info:pmid/34206844&rfr_iscdi=true