Loading…

Effect of Friction Stir Welding Techniques and Parameters on Polymers Joint Efficiency—A Critical Review

The objective of current work is to analyse the influence of different welding techniques and welding parameters on the morphology and mechanical strength of friction stir welds (FSW) in polymers, based on data collected in the literature. In the current work, only articles that provide data on the...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2021-06, Vol.13 (13), p.2056
Main Authors: Pereira, Miguel A. R., Amaro, Ana M., Reis, Paulo N. B., Loureiro, Altino
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of current work is to analyse the influence of different welding techniques and welding parameters on the morphology and mechanical strength of friction stir welds (FSW) in polymers, based on data collected in the literature. In the current work, only articles that provide data on the joint efficiency, or sufficient information to estimate it are considered. The process using conventional tool is presented and compared with new procedures developed for FSW of polymers, such as those using tools with heated stationary shoulder, preheating of the polymer or double-side passage of the tool. The influence of tool rotational speed (w), welding speed (v), tilt angle and geometry of the pin are discussed. This work focuses on the polymers most studied in the literature, polyethylene (PE) and polypropylene (PP). The use of external heating and tools with stationary shoulder proved to be of great importance in improving the surface finish, reducing defects, and increasing the mechanical strength of the welds. The increase in the w/v ratio increased the joint efficiency, especially when using conventional tools on PE. A trend was obtained for conventional FSW, but it was difficult to establish mathematical relationships, because of the variability of welding conditions.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym13132056