Loading…

ACE: the Advanced Cohort Engine for searching longitudinal patient records

Abstract Objective To propose a paradigm for a scalable time-aware clinical data search, and to describe the design, implementation and use of a search engine realizing this paradigm. Materials and Methods The Advanced Cohort Engine (ACE) uses a temporal query language and in-memory datastore of pat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Medical Informatics Association : JAMIA 2021-07, Vol.28 (7), p.1468-1479
Main Authors: Callahan, Alison, Polony, Vladimir, Posada, José D, Banda, Juan M, Gombar, Saurabh, Shah, Nigam H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-d7ff7a037bc147f17393d5deee89f050e836f29f66006ccb14347f6ec56ab2cb3
cites cdi_FETCH-LOGICAL-c420t-d7ff7a037bc147f17393d5deee89f050e836f29f66006ccb14347f6ec56ab2cb3
container_end_page 1479
container_issue 7
container_start_page 1468
container_title Journal of the American Medical Informatics Association : JAMIA
container_volume 28
creator Callahan, Alison
Polony, Vladimir
Posada, José D
Banda, Juan M
Gombar, Saurabh
Shah, Nigam H
description Abstract Objective To propose a paradigm for a scalable time-aware clinical data search, and to describe the design, implementation and use of a search engine realizing this paradigm. Materials and Methods The Advanced Cohort Engine (ACE) uses a temporal query language and in-memory datastore of patient objects to provide a fast, scalable, and expressive time-aware search. ACE accepts data in the Observational Medicine Outcomes Partnership Common Data Model, and is configurable to balance performance with compute cost. ACE’s temporal query language supports automatic query expansion using clinical knowledge graphs. The ACE API can be used with R, Python, Java, HTTP, and a Web UI. Results ACE offers an expressive query language for complex temporal search across many clinical data types with multiple output options. ACE enables electronic phenotyping and cohort-building with subsecond response times in searching the data of millions of patients for a variety of use cases. Discussion ACE enables fast, time-aware search using a patient object-centric datastore, thereby overcoming many technical and design shortcomings of relational algebra-based querying. Integrating electronic phenotype development with cohort-building enables a variety of high-value uses for a learning health system. Tradeoffs include the need to learn a new query language and the technical setup burden. Conclusion ACE is a tool that combines a unique query language for time-aware search of longitudinal patient records with a patient object datastore for rapid electronic phenotyping, cohort extraction, and exploratory data analyses.
doi_str_mv 10.1093/jamia/ocab027
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8279796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jamia/ocab027</oup_id><sourcerecordid>2501266642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-d7ff7a037bc147f17393d5deee89f050e836f29f66006ccb14347f6ec56ab2cb3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EouVx5Ip85BLqR2I3HJCqqrxUiQtI3CzHWbeu0rjYSSX-PYGWUk6cdrX7aWY0CF1Qck1JzgcLvXR64I0uCJMHqE8zJpNcpm-He3sPncS4IIQKxrNj1ONcUjbM0j56Go0nN7iZAx6Va10bKPHYz31o8KSeuRqw9QFH0MHMXT3Dle-uTVu6Wld4pRsHdYMDGB_KeIaOrK4inG_nKXq9m7yMH5Lp8_3jeDRNTMpIk5TSWqkJl4WhqbRU8pyXWQkAw9ySjMCQC8tyKwQhwpiCprzDBJhM6IKZgp-i243uqi2WUJouQtCVWgW31OFDee3U30_t5mrm12rIZC5z0QlcbQWCf28hNmrpooGq0jX4NiqWEcqEECnr0GSDmuBjDGB3NpSor_7Vd_9q23_HX-5n29E_hf96-3b1j9YnLrKSLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501266642</pqid></control><display><type>article</type><title>ACE: the Advanced Cohort Engine for searching longitudinal patient records</title><source>Oxford Journals Online</source><source>PubMed Central</source><creator>Callahan, Alison ; Polony, Vladimir ; Posada, José D ; Banda, Juan M ; Gombar, Saurabh ; Shah, Nigam H</creator><creatorcontrib>Callahan, Alison ; Polony, Vladimir ; Posada, José D ; Banda, Juan M ; Gombar, Saurabh ; Shah, Nigam H</creatorcontrib><description>Abstract Objective To propose a paradigm for a scalable time-aware clinical data search, and to describe the design, implementation and use of a search engine realizing this paradigm. Materials and Methods The Advanced Cohort Engine (ACE) uses a temporal query language and in-memory datastore of patient objects to provide a fast, scalable, and expressive time-aware search. ACE accepts data in the Observational Medicine Outcomes Partnership Common Data Model, and is configurable to balance performance with compute cost. ACE’s temporal query language supports automatic query expansion using clinical knowledge graphs. The ACE API can be used with R, Python, Java, HTTP, and a Web UI. Results ACE offers an expressive query language for complex temporal search across many clinical data types with multiple output options. ACE enables electronic phenotyping and cohort-building with subsecond response times in searching the data of millions of patients for a variety of use cases. Discussion ACE enables fast, time-aware search using a patient object-centric datastore, thereby overcoming many technical and design shortcomings of relational algebra-based querying. Integrating electronic phenotype development with cohort-building enables a variety of high-value uses for a learning health system. Tradeoffs include the need to learn a new query language and the technical setup burden. Conclusion ACE is a tool that combines a unique query language for time-aware search of longitudinal patient records with a patient object datastore for rapid electronic phenotyping, cohort extraction, and exploratory data analyses.</description><identifier>ISSN: 1527-974X</identifier><identifier>ISSN: 1067-5027</identifier><identifier>EISSN: 1527-974X</identifier><identifier>DOI: 10.1093/jamia/ocab027</identifier><identifier>PMID: 33712854</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Humans ; Medical Records ; Research and Applications ; Search Engine</subject><ispartof>Journal of the American Medical Informatics Association : JAMIA, 2021-07, Vol.28 (7), p.1468-1479</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-d7ff7a037bc147f17393d5deee89f050e836f29f66006ccb14347f6ec56ab2cb3</citedby><cites>FETCH-LOGICAL-c420t-d7ff7a037bc147f17393d5deee89f050e836f29f66006ccb14347f6ec56ab2cb3</cites><orcidid>0000-0001-8499-824X ; 0000-0001-9385-7158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279796/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279796/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33712854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Callahan, Alison</creatorcontrib><creatorcontrib>Polony, Vladimir</creatorcontrib><creatorcontrib>Posada, José D</creatorcontrib><creatorcontrib>Banda, Juan M</creatorcontrib><creatorcontrib>Gombar, Saurabh</creatorcontrib><creatorcontrib>Shah, Nigam H</creatorcontrib><title>ACE: the Advanced Cohort Engine for searching longitudinal patient records</title><title>Journal of the American Medical Informatics Association : JAMIA</title><addtitle>J Am Med Inform Assoc</addtitle><description>Abstract Objective To propose a paradigm for a scalable time-aware clinical data search, and to describe the design, implementation and use of a search engine realizing this paradigm. Materials and Methods The Advanced Cohort Engine (ACE) uses a temporal query language and in-memory datastore of patient objects to provide a fast, scalable, and expressive time-aware search. ACE accepts data in the Observational Medicine Outcomes Partnership Common Data Model, and is configurable to balance performance with compute cost. ACE’s temporal query language supports automatic query expansion using clinical knowledge graphs. The ACE API can be used with R, Python, Java, HTTP, and a Web UI. Results ACE offers an expressive query language for complex temporal search across many clinical data types with multiple output options. ACE enables electronic phenotyping and cohort-building with subsecond response times in searching the data of millions of patients for a variety of use cases. Discussion ACE enables fast, time-aware search using a patient object-centric datastore, thereby overcoming many technical and design shortcomings of relational algebra-based querying. Integrating electronic phenotype development with cohort-building enables a variety of high-value uses for a learning health system. Tradeoffs include the need to learn a new query language and the technical setup burden. Conclusion ACE is a tool that combines a unique query language for time-aware search of longitudinal patient records with a patient object datastore for rapid electronic phenotyping, cohort extraction, and exploratory data analyses.</description><subject>Humans</subject><subject>Medical Records</subject><subject>Research and Applications</subject><subject>Search Engine</subject><issn>1527-974X</issn><issn>1067-5027</issn><issn>1527-974X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkEtPwzAQhC0EouVx5Ip85BLqR2I3HJCqqrxUiQtI3CzHWbeu0rjYSSX-PYGWUk6cdrX7aWY0CF1Qck1JzgcLvXR64I0uCJMHqE8zJpNcpm-He3sPncS4IIQKxrNj1ONcUjbM0j56Go0nN7iZAx6Va10bKPHYz31o8KSeuRqw9QFH0MHMXT3Dle-uTVu6Wld4pRsHdYMDGB_KeIaOrK4inG_nKXq9m7yMH5Lp8_3jeDRNTMpIk5TSWqkJl4WhqbRU8pyXWQkAw9ySjMCQC8tyKwQhwpiCprzDBJhM6IKZgp-i243uqi2WUJouQtCVWgW31OFDee3U30_t5mrm12rIZC5z0QlcbQWCf28hNmrpooGq0jX4NiqWEcqEECnr0GSDmuBjDGB3NpSor_7Vd_9q23_HX-5n29E_hf96-3b1j9YnLrKSLA</recordid><startdate>20210714</startdate><enddate>20210714</enddate><creator>Callahan, Alison</creator><creator>Polony, Vladimir</creator><creator>Posada, José D</creator><creator>Banda, Juan M</creator><creator>Gombar, Saurabh</creator><creator>Shah, Nigam H</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8499-824X</orcidid><orcidid>https://orcid.org/0000-0001-9385-7158</orcidid></search><sort><creationdate>20210714</creationdate><title>ACE: the Advanced Cohort Engine for searching longitudinal patient records</title><author>Callahan, Alison ; Polony, Vladimir ; Posada, José D ; Banda, Juan M ; Gombar, Saurabh ; Shah, Nigam H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-d7ff7a037bc147f17393d5deee89f050e836f29f66006ccb14347f6ec56ab2cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Humans</topic><topic>Medical Records</topic><topic>Research and Applications</topic><topic>Search Engine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Callahan, Alison</creatorcontrib><creatorcontrib>Polony, Vladimir</creatorcontrib><creatorcontrib>Posada, José D</creatorcontrib><creatorcontrib>Banda, Juan M</creatorcontrib><creatorcontrib>Gombar, Saurabh</creatorcontrib><creatorcontrib>Shah, Nigam H</creatorcontrib><collection>Open Access: Oxford University Press Open Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Callahan, Alison</au><au>Polony, Vladimir</au><au>Posada, José D</au><au>Banda, Juan M</au><au>Gombar, Saurabh</au><au>Shah, Nigam H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACE: the Advanced Cohort Engine for searching longitudinal patient records</atitle><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle><addtitle>J Am Med Inform Assoc</addtitle><date>2021-07-14</date><risdate>2021</risdate><volume>28</volume><issue>7</issue><spage>1468</spage><epage>1479</epage><pages>1468-1479</pages><issn>1527-974X</issn><issn>1067-5027</issn><eissn>1527-974X</eissn><abstract>Abstract Objective To propose a paradigm for a scalable time-aware clinical data search, and to describe the design, implementation and use of a search engine realizing this paradigm. Materials and Methods The Advanced Cohort Engine (ACE) uses a temporal query language and in-memory datastore of patient objects to provide a fast, scalable, and expressive time-aware search. ACE accepts data in the Observational Medicine Outcomes Partnership Common Data Model, and is configurable to balance performance with compute cost. ACE’s temporal query language supports automatic query expansion using clinical knowledge graphs. The ACE API can be used with R, Python, Java, HTTP, and a Web UI. Results ACE offers an expressive query language for complex temporal search across many clinical data types with multiple output options. ACE enables electronic phenotyping and cohort-building with subsecond response times in searching the data of millions of patients for a variety of use cases. Discussion ACE enables fast, time-aware search using a patient object-centric datastore, thereby overcoming many technical and design shortcomings of relational algebra-based querying. Integrating electronic phenotype development with cohort-building enables a variety of high-value uses for a learning health system. Tradeoffs include the need to learn a new query language and the technical setup burden. Conclusion ACE is a tool that combines a unique query language for time-aware search of longitudinal patient records with a patient object datastore for rapid electronic phenotyping, cohort extraction, and exploratory data analyses.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33712854</pmid><doi>10.1093/jamia/ocab027</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8499-824X</orcidid><orcidid>https://orcid.org/0000-0001-9385-7158</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1527-974X
ispartof Journal of the American Medical Informatics Association : JAMIA, 2021-07, Vol.28 (7), p.1468-1479
issn 1527-974X
1067-5027
1527-974X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8279796
source Oxford Journals Online; PubMed Central
subjects Humans
Medical Records
Research and Applications
Search Engine
title ACE: the Advanced Cohort Engine for searching longitudinal patient records
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACE:%20the%20Advanced%20Cohort%20Engine%20for%20searching%20longitudinal%20patient%20records&rft.jtitle=Journal%20of%20the%20American%20Medical%20Informatics%20Association%20:%20JAMIA&rft.au=Callahan,%20Alison&rft.date=2021-07-14&rft.volume=28&rft.issue=7&rft.spage=1468&rft.epage=1479&rft.pages=1468-1479&rft.issn=1527-974X&rft.eissn=1527-974X&rft_id=info:doi/10.1093/jamia/ocab027&rft_dat=%3Cproquest_pubme%3E2501266642%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-d7ff7a037bc147f17393d5deee89f050e836f29f66006ccb14347f6ec56ab2cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2501266642&rft_id=info:pmid/33712854&rft_oup_id=10.1093/jamia/ocab027&rfr_iscdi=true