Loading…
ACE: the Advanced Cohort Engine for searching longitudinal patient records
Abstract Objective To propose a paradigm for a scalable time-aware clinical data search, and to describe the design, implementation and use of a search engine realizing this paradigm. Materials and Methods The Advanced Cohort Engine (ACE) uses a temporal query language and in-memory datastore of pat...
Saved in:
Published in: | Journal of the American Medical Informatics Association : JAMIA 2021-07, Vol.28 (7), p.1468-1479 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-d7ff7a037bc147f17393d5deee89f050e836f29f66006ccb14347f6ec56ab2cb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-d7ff7a037bc147f17393d5deee89f050e836f29f66006ccb14347f6ec56ab2cb3 |
container_end_page | 1479 |
container_issue | 7 |
container_start_page | 1468 |
container_title | Journal of the American Medical Informatics Association : JAMIA |
container_volume | 28 |
creator | Callahan, Alison Polony, Vladimir Posada, José D Banda, Juan M Gombar, Saurabh Shah, Nigam H |
description | Abstract
Objective
To propose a paradigm for a scalable time-aware clinical data search, and to describe the design, implementation and use of a search engine realizing this paradigm.
Materials and Methods
The Advanced Cohort Engine (ACE) uses a temporal query language and in-memory datastore of patient objects to provide a fast, scalable, and expressive time-aware search. ACE accepts data in the Observational Medicine Outcomes Partnership Common Data Model, and is configurable to balance performance with compute cost. ACE’s temporal query language supports automatic query expansion using clinical knowledge graphs. The ACE API can be used with R, Python, Java, HTTP, and a Web UI.
Results
ACE offers an expressive query language for complex temporal search across many clinical data types with multiple output options. ACE enables electronic phenotyping and cohort-building with subsecond response times in searching the data of millions of patients for a variety of use cases.
Discussion
ACE enables fast, time-aware search using a patient object-centric datastore, thereby overcoming many technical and design shortcomings of relational algebra-based querying. Integrating electronic phenotype development with cohort-building enables a variety of high-value uses for a learning health system. Tradeoffs include the need to learn a new query language and the technical setup burden.
Conclusion
ACE is a tool that combines a unique query language for time-aware search of longitudinal patient records with a patient object datastore for rapid electronic phenotyping, cohort extraction, and exploratory data analyses. |
doi_str_mv | 10.1093/jamia/ocab027 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8279796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jamia/ocab027</oup_id><sourcerecordid>2501266642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-d7ff7a037bc147f17393d5deee89f050e836f29f66006ccb14347f6ec56ab2cb3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EouVx5Ip85BLqR2I3HJCqqrxUiQtI3CzHWbeu0rjYSSX-PYGWUk6cdrX7aWY0CF1Qck1JzgcLvXR64I0uCJMHqE8zJpNcpm-He3sPncS4IIQKxrNj1ONcUjbM0j56Go0nN7iZAx6Va10bKPHYz31o8KSeuRqw9QFH0MHMXT3Dle-uTVu6Wld4pRsHdYMDGB_KeIaOrK4inG_nKXq9m7yMH5Lp8_3jeDRNTMpIk5TSWqkJl4WhqbRU8pyXWQkAw9ySjMCQC8tyKwQhwpiCprzDBJhM6IKZgp-i243uqi2WUJouQtCVWgW31OFDee3U30_t5mrm12rIZC5z0QlcbQWCf28hNmrpooGq0jX4NiqWEcqEECnr0GSDmuBjDGB3NpSor_7Vd_9q23_HX-5n29E_hf96-3b1j9YnLrKSLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501266642</pqid></control><display><type>article</type><title>ACE: the Advanced Cohort Engine for searching longitudinal patient records</title><source>Oxford Journals Online</source><source>PubMed Central</source><creator>Callahan, Alison ; Polony, Vladimir ; Posada, José D ; Banda, Juan M ; Gombar, Saurabh ; Shah, Nigam H</creator><creatorcontrib>Callahan, Alison ; Polony, Vladimir ; Posada, José D ; Banda, Juan M ; Gombar, Saurabh ; Shah, Nigam H</creatorcontrib><description>Abstract
Objective
To propose a paradigm for a scalable time-aware clinical data search, and to describe the design, implementation and use of a search engine realizing this paradigm.
Materials and Methods
The Advanced Cohort Engine (ACE) uses a temporal query language and in-memory datastore of patient objects to provide a fast, scalable, and expressive time-aware search. ACE accepts data in the Observational Medicine Outcomes Partnership Common Data Model, and is configurable to balance performance with compute cost. ACE’s temporal query language supports automatic query expansion using clinical knowledge graphs. The ACE API can be used with R, Python, Java, HTTP, and a Web UI.
Results
ACE offers an expressive query language for complex temporal search across many clinical data types with multiple output options. ACE enables electronic phenotyping and cohort-building with subsecond response times in searching the data of millions of patients for a variety of use cases.
Discussion
ACE enables fast, time-aware search using a patient object-centric datastore, thereby overcoming many technical and design shortcomings of relational algebra-based querying. Integrating electronic phenotype development with cohort-building enables a variety of high-value uses for a learning health system. Tradeoffs include the need to learn a new query language and the technical setup burden.
Conclusion
ACE is a tool that combines a unique query language for time-aware search of longitudinal patient records with a patient object datastore for rapid electronic phenotyping, cohort extraction, and exploratory data analyses.</description><identifier>ISSN: 1527-974X</identifier><identifier>ISSN: 1067-5027</identifier><identifier>EISSN: 1527-974X</identifier><identifier>DOI: 10.1093/jamia/ocab027</identifier><identifier>PMID: 33712854</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Humans ; Medical Records ; Research and Applications ; Search Engine</subject><ispartof>Journal of the American Medical Informatics Association : JAMIA, 2021-07, Vol.28 (7), p.1468-1479</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-d7ff7a037bc147f17393d5deee89f050e836f29f66006ccb14347f6ec56ab2cb3</citedby><cites>FETCH-LOGICAL-c420t-d7ff7a037bc147f17393d5deee89f050e836f29f66006ccb14347f6ec56ab2cb3</cites><orcidid>0000-0001-8499-824X ; 0000-0001-9385-7158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279796/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279796/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33712854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Callahan, Alison</creatorcontrib><creatorcontrib>Polony, Vladimir</creatorcontrib><creatorcontrib>Posada, José D</creatorcontrib><creatorcontrib>Banda, Juan M</creatorcontrib><creatorcontrib>Gombar, Saurabh</creatorcontrib><creatorcontrib>Shah, Nigam H</creatorcontrib><title>ACE: the Advanced Cohort Engine for searching longitudinal patient records</title><title>Journal of the American Medical Informatics Association : JAMIA</title><addtitle>J Am Med Inform Assoc</addtitle><description>Abstract
Objective
To propose a paradigm for a scalable time-aware clinical data search, and to describe the design, implementation and use of a search engine realizing this paradigm.
Materials and Methods
The Advanced Cohort Engine (ACE) uses a temporal query language and in-memory datastore of patient objects to provide a fast, scalable, and expressive time-aware search. ACE accepts data in the Observational Medicine Outcomes Partnership Common Data Model, and is configurable to balance performance with compute cost. ACE’s temporal query language supports automatic query expansion using clinical knowledge graphs. The ACE API can be used with R, Python, Java, HTTP, and a Web UI.
Results
ACE offers an expressive query language for complex temporal search across many clinical data types with multiple output options. ACE enables electronic phenotyping and cohort-building with subsecond response times in searching the data of millions of patients for a variety of use cases.
Discussion
ACE enables fast, time-aware search using a patient object-centric datastore, thereby overcoming many technical and design shortcomings of relational algebra-based querying. Integrating electronic phenotype development with cohort-building enables a variety of high-value uses for a learning health system. Tradeoffs include the need to learn a new query language and the technical setup burden.
Conclusion
ACE is a tool that combines a unique query language for time-aware search of longitudinal patient records with a patient object datastore for rapid electronic phenotyping, cohort extraction, and exploratory data analyses.</description><subject>Humans</subject><subject>Medical Records</subject><subject>Research and Applications</subject><subject>Search Engine</subject><issn>1527-974X</issn><issn>1067-5027</issn><issn>1527-974X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkEtPwzAQhC0EouVx5Ip85BLqR2I3HJCqqrxUiQtI3CzHWbeu0rjYSSX-PYGWUk6cdrX7aWY0CF1Qck1JzgcLvXR64I0uCJMHqE8zJpNcpm-He3sPncS4IIQKxrNj1ONcUjbM0j56Go0nN7iZAx6Va10bKPHYz31o8KSeuRqw9QFH0MHMXT3Dle-uTVu6Wld4pRsHdYMDGB_KeIaOrK4inG_nKXq9m7yMH5Lp8_3jeDRNTMpIk5TSWqkJl4WhqbRU8pyXWQkAw9ySjMCQC8tyKwQhwpiCprzDBJhM6IKZgp-i243uqi2WUJouQtCVWgW31OFDee3U30_t5mrm12rIZC5z0QlcbQWCf28hNmrpooGq0jX4NiqWEcqEECnr0GSDmuBjDGB3NpSor_7Vd_9q23_HX-5n29E_hf96-3b1j9YnLrKSLA</recordid><startdate>20210714</startdate><enddate>20210714</enddate><creator>Callahan, Alison</creator><creator>Polony, Vladimir</creator><creator>Posada, José D</creator><creator>Banda, Juan M</creator><creator>Gombar, Saurabh</creator><creator>Shah, Nigam H</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8499-824X</orcidid><orcidid>https://orcid.org/0000-0001-9385-7158</orcidid></search><sort><creationdate>20210714</creationdate><title>ACE: the Advanced Cohort Engine for searching longitudinal patient records</title><author>Callahan, Alison ; Polony, Vladimir ; Posada, José D ; Banda, Juan M ; Gombar, Saurabh ; Shah, Nigam H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-d7ff7a037bc147f17393d5deee89f050e836f29f66006ccb14347f6ec56ab2cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Humans</topic><topic>Medical Records</topic><topic>Research and Applications</topic><topic>Search Engine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Callahan, Alison</creatorcontrib><creatorcontrib>Polony, Vladimir</creatorcontrib><creatorcontrib>Posada, José D</creatorcontrib><creatorcontrib>Banda, Juan M</creatorcontrib><creatorcontrib>Gombar, Saurabh</creatorcontrib><creatorcontrib>Shah, Nigam H</creatorcontrib><collection>Open Access: Oxford University Press Open Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Callahan, Alison</au><au>Polony, Vladimir</au><au>Posada, José D</au><au>Banda, Juan M</au><au>Gombar, Saurabh</au><au>Shah, Nigam H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACE: the Advanced Cohort Engine for searching longitudinal patient records</atitle><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle><addtitle>J Am Med Inform Assoc</addtitle><date>2021-07-14</date><risdate>2021</risdate><volume>28</volume><issue>7</issue><spage>1468</spage><epage>1479</epage><pages>1468-1479</pages><issn>1527-974X</issn><issn>1067-5027</issn><eissn>1527-974X</eissn><abstract>Abstract
Objective
To propose a paradigm for a scalable time-aware clinical data search, and to describe the design, implementation and use of a search engine realizing this paradigm.
Materials and Methods
The Advanced Cohort Engine (ACE) uses a temporal query language and in-memory datastore of patient objects to provide a fast, scalable, and expressive time-aware search. ACE accepts data in the Observational Medicine Outcomes Partnership Common Data Model, and is configurable to balance performance with compute cost. ACE’s temporal query language supports automatic query expansion using clinical knowledge graphs. The ACE API can be used with R, Python, Java, HTTP, and a Web UI.
Results
ACE offers an expressive query language for complex temporal search across many clinical data types with multiple output options. ACE enables electronic phenotyping and cohort-building with subsecond response times in searching the data of millions of patients for a variety of use cases.
Discussion
ACE enables fast, time-aware search using a patient object-centric datastore, thereby overcoming many technical and design shortcomings of relational algebra-based querying. Integrating electronic phenotype development with cohort-building enables a variety of high-value uses for a learning health system. Tradeoffs include the need to learn a new query language and the technical setup burden.
Conclusion
ACE is a tool that combines a unique query language for time-aware search of longitudinal patient records with a patient object datastore for rapid electronic phenotyping, cohort extraction, and exploratory data analyses.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33712854</pmid><doi>10.1093/jamia/ocab027</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8499-824X</orcidid><orcidid>https://orcid.org/0000-0001-9385-7158</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1527-974X |
ispartof | Journal of the American Medical Informatics Association : JAMIA, 2021-07, Vol.28 (7), p.1468-1479 |
issn | 1527-974X 1067-5027 1527-974X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8279796 |
source | Oxford Journals Online; PubMed Central |
subjects | Humans Medical Records Research and Applications Search Engine |
title | ACE: the Advanced Cohort Engine for searching longitudinal patient records |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACE:%20the%20Advanced%20Cohort%20Engine%20for%20searching%20longitudinal%20patient%20records&rft.jtitle=Journal%20of%20the%20American%20Medical%20Informatics%20Association%20:%20JAMIA&rft.au=Callahan,%20Alison&rft.date=2021-07-14&rft.volume=28&rft.issue=7&rft.spage=1468&rft.epage=1479&rft.pages=1468-1479&rft.issn=1527-974X&rft.eissn=1527-974X&rft_id=info:doi/10.1093/jamia/ocab027&rft_dat=%3Cproquest_pubme%3E2501266642%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-d7ff7a037bc147f17393d5deee89f050e836f29f66006ccb14347f6ec56ab2cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2501266642&rft_id=info:pmid/33712854&rft_oup_id=10.1093/jamia/ocab027&rfr_iscdi=true |