Loading…

Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease

The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO,...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2021-07, Vol.13 (14), p.3410
Main Authors: Sigafoos, Ashley N., Paradise, Brooke D., Fernandez-Zapico, Martin E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-37be22eb7615eefadd7dba3ff0f83c4c90905fbd43e89b44a06b792ef3600c883
cites cdi_FETCH-LOGICAL-c398t-37be22eb7615eefadd7dba3ff0f83c4c90905fbd43e89b44a06b792ef3600c883
container_end_page
container_issue 14
container_start_page 3410
container_title Cancers
container_volume 13
creator Sigafoos, Ashley N.
Paradise, Brooke D.
Fernandez-Zapico, Martin E.
description The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3β, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3β) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.
doi_str_mv 10.3390/cancers13143410
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8304605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554461019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-37be22eb7615eefadd7dba3ff0f83c4c90905fbd43e89b44a06b792ef3600c883</originalsourceid><addsrcrecordid>eNpdkUFrGzEQhUVIiY3rc68LufQQx9KOVrvKoVCSJjEYWtq0V6HVjtYya8mVdlPy7-PYIaSeyzxmPh7DPEI-MXoJIOncaG8wJgaMA2f0hIxzWuYzISQ_fadHZJrSmu4KgJWiPCMj4LmsRF6MyZ97bFpchXZ-t1xkv1zrded8m_3Q_eqffrrKHqL2qRlM74K_yH5iO3T6oLVvssVm2zmzH6TMhpjduIQ64Ufyweou4fS1T8jv228P1_ez5fe7xfXX5cyArPoZlDXmOdalYAWi1U1TNrUGa6mtwHAjqaSFrRsOWMmac01FXcocLQhKTVXBhHw5-G6HeoONQd9H3altdBsdn1TQTv2_8W6l2vCoKqBc0GJn8PnVIIa_A6ZebVwy2HXaYxiSyouiYBQEkzv0_AhdhyHu_rWnOBeM7qn5gTIxpBTRvh3DqHqJTR3FBs_TWItq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554461019</pqid></control><display><type>article</type><title>Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Sigafoos, Ashley N. ; Paradise, Brooke D. ; Fernandez-Zapico, Martin E.</creator><creatorcontrib>Sigafoos, Ashley N. ; Paradise, Brooke D. ; Fernandez-Zapico, Martin E.</creatorcontrib><description>The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3β, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3β) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers13143410</identifier><identifier>PMID: 34298625</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Apoptosis ; Basal cell carcinoma ; Caspase ; Cell cycle ; Cholesterol ; Colorectal carcinoma ; Disease ; Gene loci ; Hedgehog protein ; Insects ; Ligands ; Medulloblastoma ; Mutation ; Ovaries ; Pancreas ; Pancreatic carcinoma ; Pattern formation ; Prostate ; Protein kinase A ; Proteins ; Regulation ; Review ; Signal transduction ; Stem cells ; Transcription factors ; Tumors</subject><ispartof>Cancers, 2021-07, Vol.13 (14), p.3410</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-37be22eb7615eefadd7dba3ff0f83c4c90905fbd43e89b44a06b792ef3600c883</citedby><cites>FETCH-LOGICAL-c398t-37be22eb7615eefadd7dba3ff0f83c4c90905fbd43e89b44a06b792ef3600c883</cites><orcidid>0000-0002-8089-3907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554461019/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554461019?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Sigafoos, Ashley N.</creatorcontrib><creatorcontrib>Paradise, Brooke D.</creatorcontrib><creatorcontrib>Fernandez-Zapico, Martin E.</creatorcontrib><title>Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease</title><title>Cancers</title><description>The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3β, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3β) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.</description><subject>Apoptosis</subject><subject>Basal cell carcinoma</subject><subject>Caspase</subject><subject>Cell cycle</subject><subject>Cholesterol</subject><subject>Colorectal carcinoma</subject><subject>Disease</subject><subject>Gene loci</subject><subject>Hedgehog protein</subject><subject>Insects</subject><subject>Ligands</subject><subject>Medulloblastoma</subject><subject>Mutation</subject><subject>Ovaries</subject><subject>Pancreas</subject><subject>Pancreatic carcinoma</subject><subject>Pattern formation</subject><subject>Prostate</subject><subject>Protein kinase A</subject><subject>Proteins</subject><subject>Regulation</subject><subject>Review</subject><subject>Signal transduction</subject><subject>Stem cells</subject><subject>Transcription factors</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUFrGzEQhUVIiY3rc68LufQQx9KOVrvKoVCSJjEYWtq0V6HVjtYya8mVdlPy7-PYIaSeyzxmPh7DPEI-MXoJIOncaG8wJgaMA2f0hIxzWuYzISQ_fadHZJrSmu4KgJWiPCMj4LmsRF6MyZ97bFpchXZ-t1xkv1zrded8m_3Q_eqffrrKHqL2qRlM74K_yH5iO3T6oLVvssVm2zmzH6TMhpjduIQ64Ufyweou4fS1T8jv228P1_ez5fe7xfXX5cyArPoZlDXmOdalYAWi1U1TNrUGa6mtwHAjqaSFrRsOWMmac01FXcocLQhKTVXBhHw5-G6HeoONQd9H3altdBsdn1TQTv2_8W6l2vCoKqBc0GJn8PnVIIa_A6ZebVwy2HXaYxiSyouiYBQEkzv0_AhdhyHu_rWnOBeM7qn5gTIxpBTRvh3DqHqJTR3FBs_TWItq</recordid><startdate>20210707</startdate><enddate>20210707</enddate><creator>Sigafoos, Ashley N.</creator><creator>Paradise, Brooke D.</creator><creator>Fernandez-Zapico, Martin E.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8089-3907</orcidid></search><sort><creationdate>20210707</creationdate><title>Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease</title><author>Sigafoos, Ashley N. ; Paradise, Brooke D. ; Fernandez-Zapico, Martin E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-37be22eb7615eefadd7dba3ff0f83c4c90905fbd43e89b44a06b792ef3600c883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apoptosis</topic><topic>Basal cell carcinoma</topic><topic>Caspase</topic><topic>Cell cycle</topic><topic>Cholesterol</topic><topic>Colorectal carcinoma</topic><topic>Disease</topic><topic>Gene loci</topic><topic>Hedgehog protein</topic><topic>Insects</topic><topic>Ligands</topic><topic>Medulloblastoma</topic><topic>Mutation</topic><topic>Ovaries</topic><topic>Pancreas</topic><topic>Pancreatic carcinoma</topic><topic>Pattern formation</topic><topic>Prostate</topic><topic>Protein kinase A</topic><topic>Proteins</topic><topic>Regulation</topic><topic>Review</topic><topic>Signal transduction</topic><topic>Stem cells</topic><topic>Transcription factors</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sigafoos, Ashley N.</creatorcontrib><creatorcontrib>Paradise, Brooke D.</creatorcontrib><creatorcontrib>Fernandez-Zapico, Martin E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sigafoos, Ashley N.</au><au>Paradise, Brooke D.</au><au>Fernandez-Zapico, Martin E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease</atitle><jtitle>Cancers</jtitle><date>2021-07-07</date><risdate>2021</risdate><volume>13</volume><issue>14</issue><spage>3410</spage><pages>3410-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3β, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3β) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34298625</pmid><doi>10.3390/cancers13143410</doi><orcidid>https://orcid.org/0000-0002-8089-3907</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2021-07, Vol.13 (14), p.3410
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8304605
source Open Access: PubMed Central; Publicly Available Content Database
subjects Apoptosis
Basal cell carcinoma
Caspase
Cell cycle
Cholesterol
Colorectal carcinoma
Disease
Gene loci
Hedgehog protein
Insects
Ligands
Medulloblastoma
Mutation
Ovaries
Pancreas
Pancreatic carcinoma
Pattern formation
Prostate
Protein kinase A
Proteins
Regulation
Review
Signal transduction
Stem cells
Transcription factors
Tumors
title Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hedgehog/GLI%20Signaling%20Pathway:%20Transduction,%20Regulation,%20and%20Implications%20for%20Disease&rft.jtitle=Cancers&rft.au=Sigafoos,%20Ashley%20N.&rft.date=2021-07-07&rft.volume=13&rft.issue=14&rft.spage=3410&rft.pages=3410-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers13143410&rft_dat=%3Cproquest_pubme%3E2554461019%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-37be22eb7615eefadd7dba3ff0f83c4c90905fbd43e89b44a06b792ef3600c883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554461019&rft_id=info:pmid/34298625&rfr_iscdi=true