Loading…

Enzymatic depolymerization of highly crystalline polyethylene terephthalate enabled in moist-solid reaction mixtures

Less than 9% of the plastic produced is recycled after use, contributing to the global plastic pollution problem. While polyethylene terephthalate (PET) is one of the most common plastics, its thermomechanical recycling generates a material of lesser quality. Enzymes are highly selective, renewable...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2021-07, Vol.118 (29), p.1-6
Main Authors: Kaabel, Sandra, Therien, J. P. Daniel, Deschênes, Catherine E., Duncan, Dustin, Friščić, Tomislav, Auclair, Karine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Less than 9% of the plastic produced is recycled after use, contributing to the global plastic pollution problem. While polyethylene terephthalate (PET) is one of the most common plastics, its thermomechanical recycling generates a material of lesser quality. Enzymes are highly selective, renewable catalysts active at mild temperatures; however, they lack activity toward the more crystalline forms of PET commonly found in consumer plastics, requiring the energy-expensive melt-amorphization step of PET before enzymatic depolymerization. We report here that, when used in moist-solid reaction mixtures instead of the typical dilute aqueous solutions or slurries, the cutinase from Humicola insolens can directly depolymerize amorphous and crystalline regions of PET equally, without any pretreatment, with a 13-fold higher space-time yield and a 15-fold higher enzyme efficiency than reported in prior studies with high-crystallinity material. Further, this process shows a 26-fold selectivity for terephthalic acid over other hydrolysis products.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2026452118