Loading…

Fire Retardancy, Water Absorption, and Viscoelasticity of Borated Wood—Polycarbonate Biocomposites

Demand for high-performance biocomposites is increasing due to their ease of processing, low environmental impact, and in-service performance. This study investigated the effect of boric acid modification of wood flour on polycarbonate (PC) wood composites’ thermal stability, fire retardancy, water...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2021-07, Vol.13 (14), p.2234
Main Authors: Zhang, Jingfa, Koubaa, Ahmed, Xing, Dan, Godard, François, Li, Peng, Tao, Yubo, Wang, Xiang-Ming, Wang, Haigang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-dedb8806217c0076020e0fba9cb452dbeab83f00d21b871f6c85c4ccd95f0833
cites cdi_FETCH-LOGICAL-c392t-dedb8806217c0076020e0fba9cb452dbeab83f00d21b871f6c85c4ccd95f0833
container_end_page
container_issue 14
container_start_page 2234
container_title Polymers
container_volume 13
creator Zhang, Jingfa
Koubaa, Ahmed
Xing, Dan
Godard, François
Li, Peng
Tao, Yubo
Wang, Xiang-Ming
Wang, Haigang
description Demand for high-performance biocomposites is increasing due to their ease of processing, low environmental impact, and in-service performance. This study investigated the effect of boric acid modification of wood flour on polycarbonate (PC) wood composites’ thermal stability, fire retardancy, water absorption, and creep behavior. The composites’ fire retardancy increased with increasing wood flour content, and their char residue increased by 102.3% compared to that of pure PC. However, the water absorption of the resulting composites increased due to the hydroxyl groups of the wood flour. Wood flour also improved the composites’ anti-creep properties. The excellent fire retardancy and anti-creep properties of wood–PC composites expand their use in the construction sector.
doi_str_mv 10.3390/polym13142234
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8309212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555106162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-dedb8806217c0076020e0fba9cb452dbeab83f00d21b871f6c85c4ccd95f0833</originalsourceid><addsrcrecordid>eNpdkU1LHEEQhpsQyYp69N6QSw5OUt09PR-XgEo0AUERcY9Nf41pmZmadPcG9pYfkV_oL3GWFXGtSxVVDy_vSxFyzOCrEC18m7BfD0ywknNRfiD7HGpRlKKCj2_mBTlK6RHmKmVVsfoTWYhSALQt2yfuIkRPb33W0enRrk_oUmcf6alJGKcccDyhenT0PiSLvtcpBxvymmJHzzDOqKNLRPf07__N7MXqaHCct_QsoMVhwhSyT4dkr9N98kcv_YDcXfy4O_9ZXF1f_jo_vSqsaHkunHemaaDirLYAdQUcPHRGt9aUkjvjtWlEB-A4M03Nuso20pbWulZ20AhxQL5vZaeVGbyzfsxR92qKYdBxrVAHtXsZw2_1gH9VI6DljM8CX14EIv5Z-ZTVMMf2fa9Hj6ukuJSSQcWqDfr5HfqIqzjO6TZUWTeylhuq2FI2YkrRd69mGKjNB9XOB8Uze6OQXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554785752</pqid></control><display><type>article</type><title>Fire Retardancy, Water Absorption, and Viscoelasticity of Borated Wood—Polycarbonate Biocomposites</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Zhang, Jingfa ; Koubaa, Ahmed ; Xing, Dan ; Godard, François ; Li, Peng ; Tao, Yubo ; Wang, Xiang-Ming ; Wang, Haigang</creator><creatorcontrib>Zhang, Jingfa ; Koubaa, Ahmed ; Xing, Dan ; Godard, François ; Li, Peng ; Tao, Yubo ; Wang, Xiang-Ming ; Wang, Haigang</creatorcontrib><description>Demand for high-performance biocomposites is increasing due to their ease of processing, low environmental impact, and in-service performance. This study investigated the effect of boric acid modification of wood flour on polycarbonate (PC) wood composites’ thermal stability, fire retardancy, water absorption, and creep behavior. The composites’ fire retardancy increased with increasing wood flour content, and their char residue increased by 102.3% compared to that of pure PC. However, the water absorption of the resulting composites increased due to the hydroxyl groups of the wood flour. Wood flour also improved the composites’ anti-creep properties. The excellent fire retardancy and anti-creep properties of wood–PC composites expand their use in the construction sector.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13142234</identifier><identifier>PMID: 34300991</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Biomedical materials ; Cellulose ; Creep (materials) ; Environmental impact ; Flour ; Heat ; Hydroxyl groups ; Laboratories ; Lignocellulose ; Mechanical properties ; Polycarbonate resins ; Polymer matrix composites ; Polymers ; Thermal stability ; Viscoelasticity ; Water absorption ; Wood</subject><ispartof>Polymers, 2021-07, Vol.13 (14), p.2234</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-dedb8806217c0076020e0fba9cb452dbeab83f00d21b871f6c85c4ccd95f0833</citedby><cites>FETCH-LOGICAL-c392t-dedb8806217c0076020e0fba9cb452dbeab83f00d21b871f6c85c4ccd95f0833</cites><orcidid>0000-0002-5851-427X ; 0000-0001-7812-5397 ; 0000-0002-7895-1901 ; 0000-0001-9341-105X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554785752/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554785752?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Zhang, Jingfa</creatorcontrib><creatorcontrib>Koubaa, Ahmed</creatorcontrib><creatorcontrib>Xing, Dan</creatorcontrib><creatorcontrib>Godard, François</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Tao, Yubo</creatorcontrib><creatorcontrib>Wang, Xiang-Ming</creatorcontrib><creatorcontrib>Wang, Haigang</creatorcontrib><title>Fire Retardancy, Water Absorption, and Viscoelasticity of Borated Wood—Polycarbonate Biocomposites</title><title>Polymers</title><description>Demand for high-performance biocomposites is increasing due to their ease of processing, low environmental impact, and in-service performance. This study investigated the effect of boric acid modification of wood flour on polycarbonate (PC) wood composites’ thermal stability, fire retardancy, water absorption, and creep behavior. The composites’ fire retardancy increased with increasing wood flour content, and their char residue increased by 102.3% compared to that of pure PC. However, the water absorption of the resulting composites increased due to the hydroxyl groups of the wood flour. Wood flour also improved the composites’ anti-creep properties. The excellent fire retardancy and anti-creep properties of wood–PC composites expand their use in the construction sector.</description><subject>Acids</subject><subject>Biomedical materials</subject><subject>Cellulose</subject><subject>Creep (materials)</subject><subject>Environmental impact</subject><subject>Flour</subject><subject>Heat</subject><subject>Hydroxyl groups</subject><subject>Laboratories</subject><subject>Lignocellulose</subject><subject>Mechanical properties</subject><subject>Polycarbonate resins</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Thermal stability</subject><subject>Viscoelasticity</subject><subject>Water absorption</subject><subject>Wood</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1LHEEQhpsQyYp69N6QSw5OUt09PR-XgEo0AUERcY9Nf41pmZmadPcG9pYfkV_oL3GWFXGtSxVVDy_vSxFyzOCrEC18m7BfD0ywknNRfiD7HGpRlKKCj2_mBTlK6RHmKmVVsfoTWYhSALQt2yfuIkRPb33W0enRrk_oUmcf6alJGKcccDyhenT0PiSLvtcpBxvymmJHzzDOqKNLRPf07__N7MXqaHCct_QsoMVhwhSyT4dkr9N98kcv_YDcXfy4O_9ZXF1f_jo_vSqsaHkunHemaaDirLYAdQUcPHRGt9aUkjvjtWlEB-A4M03Nuso20pbWulZ20AhxQL5vZaeVGbyzfsxR92qKYdBxrVAHtXsZw2_1gH9VI6DljM8CX14EIv5Z-ZTVMMf2fa9Hj6ukuJSSQcWqDfr5HfqIqzjO6TZUWTeylhuq2FI2YkrRd69mGKjNB9XOB8Uze6OQXA</recordid><startdate>20210707</startdate><enddate>20210707</enddate><creator>Zhang, Jingfa</creator><creator>Koubaa, Ahmed</creator><creator>Xing, Dan</creator><creator>Godard, François</creator><creator>Li, Peng</creator><creator>Tao, Yubo</creator><creator>Wang, Xiang-Ming</creator><creator>Wang, Haigang</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5851-427X</orcidid><orcidid>https://orcid.org/0000-0001-7812-5397</orcidid><orcidid>https://orcid.org/0000-0002-7895-1901</orcidid><orcidid>https://orcid.org/0000-0001-9341-105X</orcidid></search><sort><creationdate>20210707</creationdate><title>Fire Retardancy, Water Absorption, and Viscoelasticity of Borated Wood—Polycarbonate Biocomposites</title><author>Zhang, Jingfa ; Koubaa, Ahmed ; Xing, Dan ; Godard, François ; Li, Peng ; Tao, Yubo ; Wang, Xiang-Ming ; Wang, Haigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-dedb8806217c0076020e0fba9cb452dbeab83f00d21b871f6c85c4ccd95f0833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acids</topic><topic>Biomedical materials</topic><topic>Cellulose</topic><topic>Creep (materials)</topic><topic>Environmental impact</topic><topic>Flour</topic><topic>Heat</topic><topic>Hydroxyl groups</topic><topic>Laboratories</topic><topic>Lignocellulose</topic><topic>Mechanical properties</topic><topic>Polycarbonate resins</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Thermal stability</topic><topic>Viscoelasticity</topic><topic>Water absorption</topic><topic>Wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jingfa</creatorcontrib><creatorcontrib>Koubaa, Ahmed</creatorcontrib><creatorcontrib>Xing, Dan</creatorcontrib><creatorcontrib>Godard, François</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Tao, Yubo</creatorcontrib><creatorcontrib>Wang, Xiang-Ming</creatorcontrib><creatorcontrib>Wang, Haigang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jingfa</au><au>Koubaa, Ahmed</au><au>Xing, Dan</au><au>Godard, François</au><au>Li, Peng</au><au>Tao, Yubo</au><au>Wang, Xiang-Ming</au><au>Wang, Haigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fire Retardancy, Water Absorption, and Viscoelasticity of Borated Wood—Polycarbonate Biocomposites</atitle><jtitle>Polymers</jtitle><date>2021-07-07</date><risdate>2021</risdate><volume>13</volume><issue>14</issue><spage>2234</spage><pages>2234-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Demand for high-performance biocomposites is increasing due to their ease of processing, low environmental impact, and in-service performance. This study investigated the effect of boric acid modification of wood flour on polycarbonate (PC) wood composites’ thermal stability, fire retardancy, water absorption, and creep behavior. The composites’ fire retardancy increased with increasing wood flour content, and their char residue increased by 102.3% compared to that of pure PC. However, the water absorption of the resulting composites increased due to the hydroxyl groups of the wood flour. Wood flour also improved the composites’ anti-creep properties. The excellent fire retardancy and anti-creep properties of wood–PC composites expand their use in the construction sector.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34300991</pmid><doi>10.3390/polym13142234</doi><orcidid>https://orcid.org/0000-0002-5851-427X</orcidid><orcidid>https://orcid.org/0000-0001-7812-5397</orcidid><orcidid>https://orcid.org/0000-0002-7895-1901</orcidid><orcidid>https://orcid.org/0000-0001-9341-105X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2021-07, Vol.13 (14), p.2234
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8309212
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Acids
Biomedical materials
Cellulose
Creep (materials)
Environmental impact
Flour
Heat
Hydroxyl groups
Laboratories
Lignocellulose
Mechanical properties
Polycarbonate resins
Polymer matrix composites
Polymers
Thermal stability
Viscoelasticity
Water absorption
Wood
title Fire Retardancy, Water Absorption, and Viscoelasticity of Borated Wood—Polycarbonate Biocomposites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fire%20Retardancy,%20Water%20Absorption,%20and%20Viscoelasticity%20of%20Borated%20Wood%E2%80%94Polycarbonate%20Biocomposites&rft.jtitle=Polymers&rft.au=Zhang,%20Jingfa&rft.date=2021-07-07&rft.volume=13&rft.issue=14&rft.spage=2234&rft.pages=2234-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13142234&rft_dat=%3Cproquest_pubme%3E2555106162%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-dedb8806217c0076020e0fba9cb452dbeab83f00d21b871f6c85c4ccd95f0833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554785752&rft_id=info:pmid/34300991&rfr_iscdi=true