Loading…

HIF1α-Regulated Expression of the Fatty Acid Binding Protein Family Is Important for Hypoxic Reactivation of Kaposi’s Sarcoma-Associated Herpesvirus

The hypoxic microenvironment and metabolic reprogramming are two major contributors to the phenotype of oncogenic virus-infected cells. Infection by Kaposi’s sarcoma-associated herpesvirus (KSHV) stabilizes hypoxia-inducible factor 1α (HIF1α) and reprograms cellular metabolism. We investigated the c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of virology 2021-05, Vol.95 (12)
Main Authors: Singh, Rajnish Kumar, Bose, Dipayan, Robertson, Erle S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hypoxic microenvironment and metabolic reprogramming are two major contributors to the phenotype of oncogenic virus-infected cells. Infection by Kaposi’s sarcoma-associated herpesvirus (KSHV) stabilizes hypoxia-inducible factor 1α (HIF1α) and reprograms cellular metabolism. We investigated the comparative transcriptional regulation of all major genes involved in fatty acid and amino acid metabolism in KSHV-positive and -negative cells grown under normoxic or hypoxic conditions. We show a distinct regulation of genes involved in both fatty acid and amino acid metabolism in KSHV-positive cells grown in either normoxic or hypoxic conditions, with a particular focus on genes involved in the acetyl coenzyme A (acetyl-CoA) pathway. The fatty acid binding protein (FABP) family of genes, specifically FABP1, FABP4, and FABP7, was also observed to be synergistically upregulated in hypoxia by KSHV. This pattern of FABP gene expression was also seen in naturally infected KSHV BC3 or BCBL1 cells when compared to KSHV-negative DG75 or BL41 cells. Two KSHV-encoded antigens, which positively regulate HIF1α, the viral G-protein coupled receptor (vGPCR), and the latency-associated nuclear antigen (LANA) were shown to drive upregulation of the FABP gene transcripts. Suppression of FABPs by RNA interference resulted in an adverse effect on hypoxia-dependent viral reactivation. Overall, this study provides new evidence, which supports a rationale for the inhibition of FABPs in KSHV-positive cells as potential strategies, for the development of therapeutic approaches targeting KSHV-associated malignancies. IMPORTANCE Hypoxia is a detrimental stress to eukaryotes and inhibits several cellular processes, such as DNA replication, transcription, translation, and metabolism. Interestingly, the genome of Kaposi’s sarcoma-associated herpesvirus (KSHV) is known to undergo productive replication in hypoxia. We investigated the comparative transcriptional regulation of all major genes involved in fatty acid and amino acid metabolism in KSHV-positive and -negative cells grown under normoxic or hypoxic conditions. Several metabolic pathways were observed differentially regulated by KSHV in hypoxia, specifically, the fatty acid binding protein (FABP) family genes (FABP1, FABP4, and FABP7). KSHV-encoded antigens, vGPCR and LANA, were shown to drive upregulation of the FABP transcripts. Suppression of FABPs by RNA interference resulted in an adverse effect on hypoxia-dependent viral react
ISSN:0022-538X
1098-5514
DOI:10.1128/JVI.02063-20