Loading…
Identification of novel therapeutic targets for contrast induced acute kidney injury (CI-AKI): alpha blockers as a therapeutic strategy for CI-AKI
Iodinated contrast is used for imaging and invasive procedures and it can cause contrast induced acute kidney injury (CI-AKI), which is the third leading hospital-acquired health problem. The purpose of the present study was to determine the effect of α-adrenergic receptor-1b (Adra1b) inhibition by...
Saved in:
Published in: | Translational research : the journal of laboratory and clinical medicine 2021-09, Vol.235, p.32-47 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Iodinated contrast is used for imaging and invasive procedures and it can cause contrast induced acute kidney injury (CI-AKI), which is the third leading hospital-acquired health problem. The purpose of the present study was to determine the effect of α-adrenergic receptor-1b (Adra1b) inhibition by using terazosin on change in kidney function, gene, and protein expression in C57BL/6J male mice, 6-8 weeks with chronic kidney disease (CKD). CKD was induced by surgical nephrectomy. Twenty eight days later, 100-µL of iodinated contrast (CI group) or saline (S group) was given via the carotid artery. Whole-transcriptome RNA-sequencing (RNA-Seq) analysis of the kidneys was performed at day 2. Mice received either 50-µL of saline ip or terazosin (2 mg/kg) in 50-µL of saline ip 1 hour before contrast administration which was continued every 12 hours until the animals were euthanized 2 and 7 days later. The kidneys were removed for gene expression, immunohistochemical analysis, and blood serum analyzed for kidney function. Differential gene expression analysis identified 21 upregulated and 436 downregulated genes (fold change >2; P < 0.05) that were common to all sample (n = 3 for both contrast and saline). We identified Adra1b using bioinformatic analysis. Mice treated with terazosin had a significant decrease in serum creatinine, urinary Kim-1 levels, HIF-1α, apoptosis, and downstream Adrab1 genes including Ece1, Edn1, pMAPK14 with increased cell proliferation. Contrast exposure upregulated Adra1b gene expression in HK-2 cells. Inhibition of Adra1b with terazosin abrogated Ece1, Edn1, and contrast-induced Fsp-1, Mmp-2, Mmp-9 expression, and caspase-3/7 activity in HK-2 cells. |
---|---|
ISSN: | 1931-5244 1878-1810 |
DOI: | 10.1016/j.trsl.2021.03.005 |