Loading…
ACONITASE 3 is part of theANAC017 transcription factor-dependent mitochondrial dysfunction response
Mitochondria are tightly embedded within metabolic and regulatory networks that optimize plant performance in response to environmental challenges. The best-known mitochondrial retrograde signaling pathway involves stress-induced activation of the transcription factor NAC DOMAIN CONTAINING PROTEIN 1...
Saved in:
Published in: | Plant physiology (Bethesda) 2021-08, Vol.186 (4), p.1859-1877 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3055-9df078cd4eb5a2632071eb638f0566fd28387099ae52538286b57a183dc9c0b33 |
---|---|
cites | cdi_FETCH-LOGICAL-c3055-9df078cd4eb5a2632071eb638f0566fd28387099ae52538286b57a183dc9c0b33 |
container_end_page | 1877 |
container_issue | 4 |
container_start_page | 1859 |
container_title | Plant physiology (Bethesda) |
container_volume | 186 |
creator | Pascual, Jesús Rahikainen, Moona Angeleri, Martina Alegre, Sara Gossens, Richard Shapiguzov, Alexey Heinonen, Arttu Trotta, Andrea Durian, Guido Winter, Zsófia Sinkkonen, Jari Kangasjärvi, Jaakko Whelan, James Kangasjärvi, Saijaliisa |
description | Mitochondria are tightly embedded within metabolic and regulatory networks that optimize plant performance in response to environmental challenges. The best-known mitochondrial retrograde signaling pathway involves stress-induced activation of the transcription factor NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), which initiates protective responses to stress-induced mitochondrial dysfunction in Arabidopsis (Arabidopsis thaliana). Posttranslational control of the elicited responses, however, remains poorly understood. Previous studies linked protein phosphatase 2A subunit PP2A-B'γ, a key negative regulator of stress responses, with reversible phosphorylation of ACONITASE 3 (ACO3). Here we report on ACO3 and its phosphorylation at Ser91 as key components of stress regulation that are induced by mitochondrial dysfunction. Targeted mass spectrometry-based proteomics revealed that the abundance and phosphorylation of ACO3 increased under stress, which required signaling through ANAC017. Phosphomimetic mutation at ACO3-Ser91 and accumulation of ACO3S91D-YFP promoted the expression of genes related to mitochondrial dysfunction. Furthermore, ACO3 contributed to plant tolerance against ultraviolet B (UV-B) or antimycin A-induced mitochondrial dysfunction. These findings demonstrate that ACO3 is both a target and mediator of mitochondrial dysfunction signaling, and critical for achieving stress tolerance in Arabidopsis leaves. |
doi_str_mv | 10.1093/plphys/kiab225 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8331168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580017409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3055-9df078cd4eb5a2632071eb638f0566fd28387099ae52538286b57a183dc9c0b33</originalsourceid><addsrcrecordid>eNpVkb1PwzAQxS0EglJYGZFHlsDZjhNnQYqq8iEhGIDZcmyHGlI72ClS_3sCLQimO-nevXu6H0InBM4JVOyi7_rFOl28OdVQynfQhHBGM8pzsYsmAGMPQlQH6DClVwAgjOT76IDlBREEygnS9ezh_vapfpxjhl3CvYoDDi0eFra-r2dASjxE5ZOOrh9c8LhVeggxM7a33lg_4KUbgl4Eb6JTHTbr1K68_pZGm_rgkz1Ce63qkj3e1il6vpo_zW6yu4fr21l9l2kGnGeVaaEU2uS24YoWjEJJbFMw0QIvitZQwUQJVaUsp5wJKoqGl4oIZnSloWFsii43vv2qWVqjx3RRdbKPbqniWgbl5P-Jdwv5Ej6kYIyQQowGZ1uDGN5XNg1y6ZK2Xae8DaskKRfjC8t8fPwUnW-kOoaUom1_zxCQX2TkhozckhkXTv-G-5X_oGCf-cOM4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580017409</pqid></control><display><type>article</type><title>ACONITASE 3 is part of theANAC017 transcription factor-dependent mitochondrial dysfunction response</title><source>Oxford Journals Online</source><creator>Pascual, Jesús ; Rahikainen, Moona ; Angeleri, Martina ; Alegre, Sara ; Gossens, Richard ; Shapiguzov, Alexey ; Heinonen, Arttu ; Trotta, Andrea ; Durian, Guido ; Winter, Zsófia ; Sinkkonen, Jari ; Kangasjärvi, Jaakko ; Whelan, James ; Kangasjärvi, Saijaliisa</creator><creatorcontrib>Pascual, Jesús ; Rahikainen, Moona ; Angeleri, Martina ; Alegre, Sara ; Gossens, Richard ; Shapiguzov, Alexey ; Heinonen, Arttu ; Trotta, Andrea ; Durian, Guido ; Winter, Zsófia ; Sinkkonen, Jari ; Kangasjärvi, Jaakko ; Whelan, James ; Kangasjärvi, Saijaliisa</creatorcontrib><description>Mitochondria are tightly embedded within metabolic and regulatory networks that optimize plant performance in response to environmental challenges. The best-known mitochondrial retrograde signaling pathway involves stress-induced activation of the transcription factor NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), which initiates protective responses to stress-induced mitochondrial dysfunction in Arabidopsis (Arabidopsis thaliana). Posttranslational control of the elicited responses, however, remains poorly understood. Previous studies linked protein phosphatase 2A subunit PP2A-B'γ, a key negative regulator of stress responses, with reversible phosphorylation of ACONITASE 3 (ACO3). Here we report on ACO3 and its phosphorylation at Ser91 as key components of stress regulation that are induced by mitochondrial dysfunction. Targeted mass spectrometry-based proteomics revealed that the abundance and phosphorylation of ACO3 increased under stress, which required signaling through ANAC017. Phosphomimetic mutation at ACO3-Ser91 and accumulation of ACO3S91D-YFP promoted the expression of genes related to mitochondrial dysfunction. Furthermore, ACO3 contributed to plant tolerance against ultraviolet B (UV-B) or antimycin A-induced mitochondrial dysfunction. These findings demonstrate that ACO3 is both a target and mediator of mitochondrial dysfunction signaling, and critical for achieving stress tolerance in Arabidopsis leaves.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1093/plphys/kiab225</identifier><identifier>PMID: 34618107</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Aconitate Hydratase - genetics ; Aconitate Hydratase - metabolism ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Mitochondria - metabolism ; Transcription Factors - metabolism</subject><ispartof>Plant physiology (Bethesda), 2021-08, Vol.186 (4), p.1859-1877</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists.</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3055-9df078cd4eb5a2632071eb638f0566fd28387099ae52538286b57a183dc9c0b33</citedby><cites>FETCH-LOGICAL-c3055-9df078cd4eb5a2632071eb638f0566fd28387099ae52538286b57a183dc9c0b33</cites><orcidid>0000-0003-1803-8261 ; 0000-0002-1144-6580 ; 0000-0002-8516-3970 ; 0000-0001-5754-025X ; 0000-0001-6412-7367 ; 0000-0001-5365-8963 ; 0000-0003-4822-409X ; 0000-0001-7199-1882 ; 0000-0001-7893-2711 ; 0000-0002-3660-5090 ; 0000-0003-4250-7240 ; 0000-0002-7605-8546 ; 0000-0002-8959-1809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34618107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pascual, Jesús</creatorcontrib><creatorcontrib>Rahikainen, Moona</creatorcontrib><creatorcontrib>Angeleri, Martina</creatorcontrib><creatorcontrib>Alegre, Sara</creatorcontrib><creatorcontrib>Gossens, Richard</creatorcontrib><creatorcontrib>Shapiguzov, Alexey</creatorcontrib><creatorcontrib>Heinonen, Arttu</creatorcontrib><creatorcontrib>Trotta, Andrea</creatorcontrib><creatorcontrib>Durian, Guido</creatorcontrib><creatorcontrib>Winter, Zsófia</creatorcontrib><creatorcontrib>Sinkkonen, Jari</creatorcontrib><creatorcontrib>Kangasjärvi, Jaakko</creatorcontrib><creatorcontrib>Whelan, James</creatorcontrib><creatorcontrib>Kangasjärvi, Saijaliisa</creatorcontrib><title>ACONITASE 3 is part of theANAC017 transcription factor-dependent mitochondrial dysfunction response</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Mitochondria are tightly embedded within metabolic and regulatory networks that optimize plant performance in response to environmental challenges. The best-known mitochondrial retrograde signaling pathway involves stress-induced activation of the transcription factor NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), which initiates protective responses to stress-induced mitochondrial dysfunction in Arabidopsis (Arabidopsis thaliana). Posttranslational control of the elicited responses, however, remains poorly understood. Previous studies linked protein phosphatase 2A subunit PP2A-B'γ, a key negative regulator of stress responses, with reversible phosphorylation of ACONITASE 3 (ACO3). Here we report on ACO3 and its phosphorylation at Ser91 as key components of stress regulation that are induced by mitochondrial dysfunction. Targeted mass spectrometry-based proteomics revealed that the abundance and phosphorylation of ACO3 increased under stress, which required signaling through ANAC017. Phosphomimetic mutation at ACO3-Ser91 and accumulation of ACO3S91D-YFP promoted the expression of genes related to mitochondrial dysfunction. Furthermore, ACO3 contributed to plant tolerance against ultraviolet B (UV-B) or antimycin A-induced mitochondrial dysfunction. These findings demonstrate that ACO3 is both a target and mediator of mitochondrial dysfunction signaling, and critical for achieving stress tolerance in Arabidopsis leaves.</description><subject>Aconitate Hydratase - genetics</subject><subject>Aconitate Hydratase - metabolism</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Mitochondria - metabolism</subject><subject>Transcription Factors - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkb1PwzAQxS0EglJYGZFHlsDZjhNnQYqq8iEhGIDZcmyHGlI72ClS_3sCLQimO-nevXu6H0InBM4JVOyi7_rFOl28OdVQynfQhHBGM8pzsYsmAGMPQlQH6DClVwAgjOT76IDlBREEygnS9ezh_vapfpxjhl3CvYoDDi0eFra-r2dASjxE5ZOOrh9c8LhVeggxM7a33lg_4KUbgl4Eb6JTHTbr1K68_pZGm_rgkz1Ce63qkj3e1il6vpo_zW6yu4fr21l9l2kGnGeVaaEU2uS24YoWjEJJbFMw0QIvitZQwUQJVaUsp5wJKoqGl4oIZnSloWFsii43vv2qWVqjx3RRdbKPbqniWgbl5P-Jdwv5Ej6kYIyQQowGZ1uDGN5XNg1y6ZK2Xae8DaskKRfjC8t8fPwUnW-kOoaUom1_zxCQX2TkhozckhkXTv-G-5X_oGCf-cOM4A</recordid><startdate>20210803</startdate><enddate>20210803</enddate><creator>Pascual, Jesús</creator><creator>Rahikainen, Moona</creator><creator>Angeleri, Martina</creator><creator>Alegre, Sara</creator><creator>Gossens, Richard</creator><creator>Shapiguzov, Alexey</creator><creator>Heinonen, Arttu</creator><creator>Trotta, Andrea</creator><creator>Durian, Guido</creator><creator>Winter, Zsófia</creator><creator>Sinkkonen, Jari</creator><creator>Kangasjärvi, Jaakko</creator><creator>Whelan, James</creator><creator>Kangasjärvi, Saijaliisa</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1803-8261</orcidid><orcidid>https://orcid.org/0000-0002-1144-6580</orcidid><orcidid>https://orcid.org/0000-0002-8516-3970</orcidid><orcidid>https://orcid.org/0000-0001-5754-025X</orcidid><orcidid>https://orcid.org/0000-0001-6412-7367</orcidid><orcidid>https://orcid.org/0000-0001-5365-8963</orcidid><orcidid>https://orcid.org/0000-0003-4822-409X</orcidid><orcidid>https://orcid.org/0000-0001-7199-1882</orcidid><orcidid>https://orcid.org/0000-0001-7893-2711</orcidid><orcidid>https://orcid.org/0000-0002-3660-5090</orcidid><orcidid>https://orcid.org/0000-0003-4250-7240</orcidid><orcidid>https://orcid.org/0000-0002-7605-8546</orcidid><orcidid>https://orcid.org/0000-0002-8959-1809</orcidid></search><sort><creationdate>20210803</creationdate><title>ACONITASE 3 is part of theANAC017 transcription factor-dependent mitochondrial dysfunction response</title><author>Pascual, Jesús ; Rahikainen, Moona ; Angeleri, Martina ; Alegre, Sara ; Gossens, Richard ; Shapiguzov, Alexey ; Heinonen, Arttu ; Trotta, Andrea ; Durian, Guido ; Winter, Zsófia ; Sinkkonen, Jari ; Kangasjärvi, Jaakko ; Whelan, James ; Kangasjärvi, Saijaliisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3055-9df078cd4eb5a2632071eb638f0566fd28387099ae52538286b57a183dc9c0b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aconitate Hydratase - genetics</topic><topic>Aconitate Hydratase - metabolism</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Mitochondria - metabolism</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pascual, Jesús</creatorcontrib><creatorcontrib>Rahikainen, Moona</creatorcontrib><creatorcontrib>Angeleri, Martina</creatorcontrib><creatorcontrib>Alegre, Sara</creatorcontrib><creatorcontrib>Gossens, Richard</creatorcontrib><creatorcontrib>Shapiguzov, Alexey</creatorcontrib><creatorcontrib>Heinonen, Arttu</creatorcontrib><creatorcontrib>Trotta, Andrea</creatorcontrib><creatorcontrib>Durian, Guido</creatorcontrib><creatorcontrib>Winter, Zsófia</creatorcontrib><creatorcontrib>Sinkkonen, Jari</creatorcontrib><creatorcontrib>Kangasjärvi, Jaakko</creatorcontrib><creatorcontrib>Whelan, James</creatorcontrib><creatorcontrib>Kangasjärvi, Saijaliisa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pascual, Jesús</au><au>Rahikainen, Moona</au><au>Angeleri, Martina</au><au>Alegre, Sara</au><au>Gossens, Richard</au><au>Shapiguzov, Alexey</au><au>Heinonen, Arttu</au><au>Trotta, Andrea</au><au>Durian, Guido</au><au>Winter, Zsófia</au><au>Sinkkonen, Jari</au><au>Kangasjärvi, Jaakko</au><au>Whelan, James</au><au>Kangasjärvi, Saijaliisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACONITASE 3 is part of theANAC017 transcription factor-dependent mitochondrial dysfunction response</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2021-08-03</date><risdate>2021</risdate><volume>186</volume><issue>4</issue><spage>1859</spage><epage>1877</epage><pages>1859-1877</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Mitochondria are tightly embedded within metabolic and regulatory networks that optimize plant performance in response to environmental challenges. The best-known mitochondrial retrograde signaling pathway involves stress-induced activation of the transcription factor NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), which initiates protective responses to stress-induced mitochondrial dysfunction in Arabidopsis (Arabidopsis thaliana). Posttranslational control of the elicited responses, however, remains poorly understood. Previous studies linked protein phosphatase 2A subunit PP2A-B'γ, a key negative regulator of stress responses, with reversible phosphorylation of ACONITASE 3 (ACO3). Here we report on ACO3 and its phosphorylation at Ser91 as key components of stress regulation that are induced by mitochondrial dysfunction. Targeted mass spectrometry-based proteomics revealed that the abundance and phosphorylation of ACO3 increased under stress, which required signaling through ANAC017. Phosphomimetic mutation at ACO3-Ser91 and accumulation of ACO3S91D-YFP promoted the expression of genes related to mitochondrial dysfunction. Furthermore, ACO3 contributed to plant tolerance against ultraviolet B (UV-B) or antimycin A-induced mitochondrial dysfunction. These findings demonstrate that ACO3 is both a target and mediator of mitochondrial dysfunction signaling, and critical for achieving stress tolerance in Arabidopsis leaves.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>34618107</pmid><doi>10.1093/plphys/kiab225</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1803-8261</orcidid><orcidid>https://orcid.org/0000-0002-1144-6580</orcidid><orcidid>https://orcid.org/0000-0002-8516-3970</orcidid><orcidid>https://orcid.org/0000-0001-5754-025X</orcidid><orcidid>https://orcid.org/0000-0001-6412-7367</orcidid><orcidid>https://orcid.org/0000-0001-5365-8963</orcidid><orcidid>https://orcid.org/0000-0003-4822-409X</orcidid><orcidid>https://orcid.org/0000-0001-7199-1882</orcidid><orcidid>https://orcid.org/0000-0001-7893-2711</orcidid><orcidid>https://orcid.org/0000-0002-3660-5090</orcidid><orcidid>https://orcid.org/0000-0003-4250-7240</orcidid><orcidid>https://orcid.org/0000-0002-7605-8546</orcidid><orcidid>https://orcid.org/0000-0002-8959-1809</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2021-08, Vol.186 (4), p.1859-1877 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8331168 |
source | Oxford Journals Online |
subjects | Aconitate Hydratase - genetics Aconitate Hydratase - metabolism Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Mitochondria - metabolism Transcription Factors - metabolism |
title | ACONITASE 3 is part of theANAC017 transcription factor-dependent mitochondrial dysfunction response |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACONITASE%203%20is%20part%20of%20theANAC017%20transcription%20factor-dependent%20mitochondrial%20dysfunction%20response&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Pascual,%20Jes%C3%BAs&rft.date=2021-08-03&rft.volume=186&rft.issue=4&rft.spage=1859&rft.epage=1877&rft.pages=1859-1877&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1093/plphys/kiab225&rft_dat=%3Cproquest_pubme%3E2580017409%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3055-9df078cd4eb5a2632071eb638f0566fd28387099ae52538286b57a183dc9c0b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580017409&rft_id=info:pmid/34618107&rfr_iscdi=true |