Loading…
A contrast-enhanced-CT-based classification tree model for classifying malignancy of solid lung tumors in a Chinese clinical population
To develop and validate a contrast-enhanced CT based classification tree model for classifying solid lung tumors in clinical patients into malignant or benign. Between January 2015 and October 2017, 827 pathologically confirmed solid lung tumors (487 malignant, 340 benign; median size, 27.0 mm, IQR...
Saved in:
Published in: | Journal of thoracic disease 2021-07, Vol.13 (7), p.4407-4417 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-a4ab2708ef2544e0acb4e59e5bde612548d6cb14ad366c82dbe37542d4c61f753 |
---|---|
cites | |
container_end_page | 4417 |
container_issue | 7 |
container_start_page | 4407 |
container_title | Journal of thoracic disease |
container_volume | 13 |
creator | Cui, Xiaonan Heuvelmans, Marjolein A Sidorenkov, Grigory Zhao, Yingru Fan, Shuxuan Groen, Harry J M Dorrius, Monique D Oudkerk, Matthijs de Bock, Geertruida H Vliegenthart, Rozemarijn Ye, Zhaoxiang |
description | To develop and validate a contrast-enhanced CT based classification tree model for classifying solid lung tumors in clinical patients into malignant or benign.
Between January 2015 and October 2017, 827 pathologically confirmed solid lung tumors (487 malignant, 340 benign; median size, 27.0 mm, IQR 18.0-39.0 mm) from 827 patients from a dedicated Chinese cancer hospital were identified. Nodules were divided randomly into two groups, a training group (575 cases) and a testing group (252 cases). CT characteristics were collected by two radiologists, and analyzed using a classification and regression tree (CART) model. For validation, we used the decision analysis threshold to evaluate the classification performance of the CART model and radiologist's diagnosis (benign; malignant) in the testing group.
Three out of 19 characteristics [margin (smooth; slightly lobulated/lobulated/spiculated), and shape (round/oval; irregular), subjective enhancement (no/uniform enhancement; heterogeneous enhancement)] were automatically generated by the CART model for classifying solid lung tumors. The sensitivity, specificity, PPV, NPV, and diagnostic accuracy of the CART model is 98.5%, 58.1%, 80.6%, 98.6%, 79.8%, and 90.4%, 54.7%, 82.4% 98.5%, 74.2% for the radiologist's diagnosis by using three-threshold decision analysis.
Tumor margin and shape, and subjective tumor enhancement were the most important CT characteristics in the CART model for classifying solid lung tumors as malignant. The CART model had higher discriminatory power than radiologist's diagnosis. The CART model could help radiologists making recommendations regarding follow-up or surgery in clinical patients with a solid lung tumor. |
doi_str_mv | 10.21037/jtd-21-588 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8339765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563714368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-a4ab2708ef2544e0acb4e59e5bde612548d6cb14ad366c82dbe37542d4c61f753</originalsourceid><addsrcrecordid>eNpVkUtvGyEUhVHUKImcrLKvWFaqaIfHwHhTybLSh2Spm2SNGLhjEzHgwkwl_4L87WDnoZYNV5xzvwschG5p84XRhquvj5MjjJK2687QFWuUIlIy8eFUM0IFX16im1Iem7pkw5hSF-iSC8EYl-oKPa2wTXHKpkwE4s5EC46s70lvCjhsgynFD96ayaeIpwyAx-Qg4CHlN_Xg4xaPJvhtrO0HnAZcUvAOh7kK0zymXLCP2OD1zkcoUBt9rMyA92k_hxP7Gp0PJhS4ed0X6OH73f36J9n8_vFrvdoQyzs6ESNMz1TTwcBaIaAxthfQLqHtHUhazzonbU-FcVxK2zHXA1etYE5YSQfV8gX69sLdz_0IzsLx7UHvsx9NPuhkvP5fiX6nt-mv7jhfKnkEfHoF5PRnhjLp0RcLIZgIaS6atZKr-u2yq9bPL1abUykZhvcxtNGn9HRNr1a6plfdH_-92bv3LSv-DAOWmWM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563714368</pqid></control><display><type>article</type><title>A contrast-enhanced-CT-based classification tree model for classifying malignancy of solid lung tumors in a Chinese clinical population</title><source>PubMed Central</source><creator>Cui, Xiaonan ; Heuvelmans, Marjolein A ; Sidorenkov, Grigory ; Zhao, Yingru ; Fan, Shuxuan ; Groen, Harry J M ; Dorrius, Monique D ; Oudkerk, Matthijs ; de Bock, Geertruida H ; Vliegenthart, Rozemarijn ; Ye, Zhaoxiang</creator><creatorcontrib>Cui, Xiaonan ; Heuvelmans, Marjolein A ; Sidorenkov, Grigory ; Zhao, Yingru ; Fan, Shuxuan ; Groen, Harry J M ; Dorrius, Monique D ; Oudkerk, Matthijs ; de Bock, Geertruida H ; Vliegenthart, Rozemarijn ; Ye, Zhaoxiang</creatorcontrib><description>To develop and validate a contrast-enhanced CT based classification tree model for classifying solid lung tumors in clinical patients into malignant or benign.
Between January 2015 and October 2017, 827 pathologically confirmed solid lung tumors (487 malignant, 340 benign; median size, 27.0 mm, IQR 18.0-39.0 mm) from 827 patients from a dedicated Chinese cancer hospital were identified. Nodules were divided randomly into two groups, a training group (575 cases) and a testing group (252 cases). CT characteristics were collected by two radiologists, and analyzed using a classification and regression tree (CART) model. For validation, we used the decision analysis threshold to evaluate the classification performance of the CART model and radiologist's diagnosis (benign; malignant) in the testing group.
Three out of 19 characteristics [margin (smooth; slightly lobulated/lobulated/spiculated), and shape (round/oval; irregular), subjective enhancement (no/uniform enhancement; heterogeneous enhancement)] were automatically generated by the CART model for classifying solid lung tumors. The sensitivity, specificity, PPV, NPV, and diagnostic accuracy of the CART model is 98.5%, 58.1%, 80.6%, 98.6%, 79.8%, and 90.4%, 54.7%, 82.4% 98.5%, 74.2% for the radiologist's diagnosis by using three-threshold decision analysis.
Tumor margin and shape, and subjective tumor enhancement were the most important CT characteristics in the CART model for classifying solid lung tumors as malignant. The CART model had higher discriminatory power than radiologist's diagnosis. The CART model could help radiologists making recommendations regarding follow-up or surgery in clinical patients with a solid lung tumor.</description><identifier>ISSN: 2072-1439</identifier><identifier>EISSN: 2077-6624</identifier><identifier>DOI: 10.21037/jtd-21-588</identifier><identifier>PMID: 34422367</identifier><language>eng</language><publisher>China: AME Publishing Company</publisher><subject>Original</subject><ispartof>Journal of thoracic disease, 2021-07, Vol.13 (7), p.4407-4417</ispartof><rights>2021 Journal of Thoracic Disease. All rights reserved.</rights><rights>2021 Journal of Thoracic Disease. All rights reserved. 2021 Journal of Thoracic Disease.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-a4ab2708ef2544e0acb4e59e5bde612548d6cb14ad366c82dbe37542d4c61f753</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339765/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339765/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34422367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Xiaonan</creatorcontrib><creatorcontrib>Heuvelmans, Marjolein A</creatorcontrib><creatorcontrib>Sidorenkov, Grigory</creatorcontrib><creatorcontrib>Zhao, Yingru</creatorcontrib><creatorcontrib>Fan, Shuxuan</creatorcontrib><creatorcontrib>Groen, Harry J M</creatorcontrib><creatorcontrib>Dorrius, Monique D</creatorcontrib><creatorcontrib>Oudkerk, Matthijs</creatorcontrib><creatorcontrib>de Bock, Geertruida H</creatorcontrib><creatorcontrib>Vliegenthart, Rozemarijn</creatorcontrib><creatorcontrib>Ye, Zhaoxiang</creatorcontrib><title>A contrast-enhanced-CT-based classification tree model for classifying malignancy of solid lung tumors in a Chinese clinical population</title><title>Journal of thoracic disease</title><addtitle>J Thorac Dis</addtitle><description>To develop and validate a contrast-enhanced CT based classification tree model for classifying solid lung tumors in clinical patients into malignant or benign.
Between January 2015 and October 2017, 827 pathologically confirmed solid lung tumors (487 malignant, 340 benign; median size, 27.0 mm, IQR 18.0-39.0 mm) from 827 patients from a dedicated Chinese cancer hospital were identified. Nodules were divided randomly into two groups, a training group (575 cases) and a testing group (252 cases). CT characteristics were collected by two radiologists, and analyzed using a classification and regression tree (CART) model. For validation, we used the decision analysis threshold to evaluate the classification performance of the CART model and radiologist's diagnosis (benign; malignant) in the testing group.
Three out of 19 characteristics [margin (smooth; slightly lobulated/lobulated/spiculated), and shape (round/oval; irregular), subjective enhancement (no/uniform enhancement; heterogeneous enhancement)] were automatically generated by the CART model for classifying solid lung tumors. The sensitivity, specificity, PPV, NPV, and diagnostic accuracy of the CART model is 98.5%, 58.1%, 80.6%, 98.6%, 79.8%, and 90.4%, 54.7%, 82.4% 98.5%, 74.2% for the radiologist's diagnosis by using three-threshold decision analysis.
Tumor margin and shape, and subjective tumor enhancement were the most important CT characteristics in the CART model for classifying solid lung tumors as malignant. The CART model had higher discriminatory power than radiologist's diagnosis. The CART model could help radiologists making recommendations regarding follow-up or surgery in clinical patients with a solid lung tumor.</description><subject>Original</subject><issn>2072-1439</issn><issn>2077-6624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkUtvGyEUhVHUKImcrLKvWFaqaIfHwHhTybLSh2Spm2SNGLhjEzHgwkwl_4L87WDnoZYNV5xzvwschG5p84XRhquvj5MjjJK2687QFWuUIlIy8eFUM0IFX16im1Iem7pkw5hSF-iSC8EYl-oKPa2wTXHKpkwE4s5EC46s70lvCjhsgynFD96ayaeIpwyAx-Qg4CHlN_Xg4xaPJvhtrO0HnAZcUvAOh7kK0zymXLCP2OD1zkcoUBt9rMyA92k_hxP7Gp0PJhS4ed0X6OH73f36J9n8_vFrvdoQyzs6ESNMz1TTwcBaIaAxthfQLqHtHUhazzonbU-FcVxK2zHXA1etYE5YSQfV8gX69sLdz_0IzsLx7UHvsx9NPuhkvP5fiX6nt-mv7jhfKnkEfHoF5PRnhjLp0RcLIZgIaS6atZKr-u2yq9bPL1abUykZhvcxtNGn9HRNr1a6plfdH_-92bv3LSv-DAOWmWM</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Cui, Xiaonan</creator><creator>Heuvelmans, Marjolein A</creator><creator>Sidorenkov, Grigory</creator><creator>Zhao, Yingru</creator><creator>Fan, Shuxuan</creator><creator>Groen, Harry J M</creator><creator>Dorrius, Monique D</creator><creator>Oudkerk, Matthijs</creator><creator>de Bock, Geertruida H</creator><creator>Vliegenthart, Rozemarijn</creator><creator>Ye, Zhaoxiang</creator><general>AME Publishing Company</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210701</creationdate><title>A contrast-enhanced-CT-based classification tree model for classifying malignancy of solid lung tumors in a Chinese clinical population</title><author>Cui, Xiaonan ; Heuvelmans, Marjolein A ; Sidorenkov, Grigory ; Zhao, Yingru ; Fan, Shuxuan ; Groen, Harry J M ; Dorrius, Monique D ; Oudkerk, Matthijs ; de Bock, Geertruida H ; Vliegenthart, Rozemarijn ; Ye, Zhaoxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-a4ab2708ef2544e0acb4e59e5bde612548d6cb14ad366c82dbe37542d4c61f753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Original</topic><toplevel>online_resources</toplevel><creatorcontrib>Cui, Xiaonan</creatorcontrib><creatorcontrib>Heuvelmans, Marjolein A</creatorcontrib><creatorcontrib>Sidorenkov, Grigory</creatorcontrib><creatorcontrib>Zhao, Yingru</creatorcontrib><creatorcontrib>Fan, Shuxuan</creatorcontrib><creatorcontrib>Groen, Harry J M</creatorcontrib><creatorcontrib>Dorrius, Monique D</creatorcontrib><creatorcontrib>Oudkerk, Matthijs</creatorcontrib><creatorcontrib>de Bock, Geertruida H</creatorcontrib><creatorcontrib>Vliegenthart, Rozemarijn</creatorcontrib><creatorcontrib>Ye, Zhaoxiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of thoracic disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Xiaonan</au><au>Heuvelmans, Marjolein A</au><au>Sidorenkov, Grigory</au><au>Zhao, Yingru</au><au>Fan, Shuxuan</au><au>Groen, Harry J M</au><au>Dorrius, Monique D</au><au>Oudkerk, Matthijs</au><au>de Bock, Geertruida H</au><au>Vliegenthart, Rozemarijn</au><au>Ye, Zhaoxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A contrast-enhanced-CT-based classification tree model for classifying malignancy of solid lung tumors in a Chinese clinical population</atitle><jtitle>Journal of thoracic disease</jtitle><addtitle>J Thorac Dis</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>13</volume><issue>7</issue><spage>4407</spage><epage>4417</epage><pages>4407-4417</pages><issn>2072-1439</issn><eissn>2077-6624</eissn><abstract>To develop and validate a contrast-enhanced CT based classification tree model for classifying solid lung tumors in clinical patients into malignant or benign.
Between January 2015 and October 2017, 827 pathologically confirmed solid lung tumors (487 malignant, 340 benign; median size, 27.0 mm, IQR 18.0-39.0 mm) from 827 patients from a dedicated Chinese cancer hospital were identified. Nodules were divided randomly into two groups, a training group (575 cases) and a testing group (252 cases). CT characteristics were collected by two radiologists, and analyzed using a classification and regression tree (CART) model. For validation, we used the decision analysis threshold to evaluate the classification performance of the CART model and radiologist's diagnosis (benign; malignant) in the testing group.
Three out of 19 characteristics [margin (smooth; slightly lobulated/lobulated/spiculated), and shape (round/oval; irregular), subjective enhancement (no/uniform enhancement; heterogeneous enhancement)] were automatically generated by the CART model for classifying solid lung tumors. The sensitivity, specificity, PPV, NPV, and diagnostic accuracy of the CART model is 98.5%, 58.1%, 80.6%, 98.6%, 79.8%, and 90.4%, 54.7%, 82.4% 98.5%, 74.2% for the radiologist's diagnosis by using three-threshold decision analysis.
Tumor margin and shape, and subjective tumor enhancement were the most important CT characteristics in the CART model for classifying solid lung tumors as malignant. The CART model had higher discriminatory power than radiologist's diagnosis. The CART model could help radiologists making recommendations regarding follow-up or surgery in clinical patients with a solid lung tumor.</abstract><cop>China</cop><pub>AME Publishing Company</pub><pmid>34422367</pmid><doi>10.21037/jtd-21-588</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-1439 |
ispartof | Journal of thoracic disease, 2021-07, Vol.13 (7), p.4407-4417 |
issn | 2072-1439 2077-6624 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8339765 |
source | PubMed Central |
subjects | Original |
title | A contrast-enhanced-CT-based classification tree model for classifying malignancy of solid lung tumors in a Chinese clinical population |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20contrast-enhanced-CT-based%20classification%20tree%20model%20for%20classifying%20malignancy%20of%20solid%20lung%20tumors%20in%20a%20Chinese%20clinical%20population&rft.jtitle=Journal%20of%20thoracic%20disease&rft.au=Cui,%20Xiaonan&rft.date=2021-07-01&rft.volume=13&rft.issue=7&rft.spage=4407&rft.epage=4417&rft.pages=4407-4417&rft.issn=2072-1439&rft.eissn=2077-6624&rft_id=info:doi/10.21037/jtd-21-588&rft_dat=%3Cproquest_pubme%3E2563714368%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-a4ab2708ef2544e0acb4e59e5bde612548d6cb14ad366c82dbe37542d4c61f753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2563714368&rft_id=info:pmid/34422367&rfr_iscdi=true |