Loading…

A contrast-enhanced-CT-based classification tree model for classifying malignancy of solid lung tumors in a Chinese clinical population

To develop and validate a contrast-enhanced CT based classification tree model for classifying solid lung tumors in clinical patients into malignant or benign. Between January 2015 and October 2017, 827 pathologically confirmed solid lung tumors (487 malignant, 340 benign; median size, 27.0 mm, IQR...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thoracic disease 2021-07, Vol.13 (7), p.4407-4417
Main Authors: Cui, Xiaonan, Heuvelmans, Marjolein A, Sidorenkov, Grigory, Zhao, Yingru, Fan, Shuxuan, Groen, Harry J M, Dorrius, Monique D, Oudkerk, Matthijs, de Bock, Geertruida H, Vliegenthart, Rozemarijn, Ye, Zhaoxiang
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-a4ab2708ef2544e0acb4e59e5bde612548d6cb14ad366c82dbe37542d4c61f753
cites
container_end_page 4417
container_issue 7
container_start_page 4407
container_title Journal of thoracic disease
container_volume 13
creator Cui, Xiaonan
Heuvelmans, Marjolein A
Sidorenkov, Grigory
Zhao, Yingru
Fan, Shuxuan
Groen, Harry J M
Dorrius, Monique D
Oudkerk, Matthijs
de Bock, Geertruida H
Vliegenthart, Rozemarijn
Ye, Zhaoxiang
description To develop and validate a contrast-enhanced CT based classification tree model for classifying solid lung tumors in clinical patients into malignant or benign. Between January 2015 and October 2017, 827 pathologically confirmed solid lung tumors (487 malignant, 340 benign; median size, 27.0 mm, IQR 18.0-39.0 mm) from 827 patients from a dedicated Chinese cancer hospital were identified. Nodules were divided randomly into two groups, a training group (575 cases) and a testing group (252 cases). CT characteristics were collected by two radiologists, and analyzed using a classification and regression tree (CART) model. For validation, we used the decision analysis threshold to evaluate the classification performance of the CART model and radiologist's diagnosis (benign; malignant) in the testing group. Three out of 19 characteristics [margin (smooth; slightly lobulated/lobulated/spiculated), and shape (round/oval; irregular), subjective enhancement (no/uniform enhancement; heterogeneous enhancement)] were automatically generated by the CART model for classifying solid lung tumors. The sensitivity, specificity, PPV, NPV, and diagnostic accuracy of the CART model is 98.5%, 58.1%, 80.6%, 98.6%, 79.8%, and 90.4%, 54.7%, 82.4% 98.5%, 74.2% for the radiologist's diagnosis by using three-threshold decision analysis. Tumor margin and shape, and subjective tumor enhancement were the most important CT characteristics in the CART model for classifying solid lung tumors as malignant. The CART model had higher discriminatory power than radiologist's diagnosis. The CART model could help radiologists making recommendations regarding follow-up or surgery in clinical patients with a solid lung tumor.
doi_str_mv 10.21037/jtd-21-588
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8339765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563714368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-a4ab2708ef2544e0acb4e59e5bde612548d6cb14ad366c82dbe37542d4c61f753</originalsourceid><addsrcrecordid>eNpVkUtvGyEUhVHUKImcrLKvWFaqaIfHwHhTybLSh2Spm2SNGLhjEzHgwkwl_4L87WDnoZYNV5xzvwschG5p84XRhquvj5MjjJK2687QFWuUIlIy8eFUM0IFX16im1Iem7pkw5hSF-iSC8EYl-oKPa2wTXHKpkwE4s5EC46s70lvCjhsgynFD96ayaeIpwyAx-Qg4CHlN_Xg4xaPJvhtrO0HnAZcUvAOh7kK0zymXLCP2OD1zkcoUBt9rMyA92k_hxP7Gp0PJhS4ed0X6OH73f36J9n8_vFrvdoQyzs6ESNMz1TTwcBaIaAxthfQLqHtHUhazzonbU-FcVxK2zHXA1etYE5YSQfV8gX69sLdz_0IzsLx7UHvsx9NPuhkvP5fiX6nt-mv7jhfKnkEfHoF5PRnhjLp0RcLIZgIaS6atZKr-u2yq9bPL1abUykZhvcxtNGn9HRNr1a6plfdH_-92bv3LSv-DAOWmWM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563714368</pqid></control><display><type>article</type><title>A contrast-enhanced-CT-based classification tree model for classifying malignancy of solid lung tumors in a Chinese clinical population</title><source>PubMed Central</source><creator>Cui, Xiaonan ; Heuvelmans, Marjolein A ; Sidorenkov, Grigory ; Zhao, Yingru ; Fan, Shuxuan ; Groen, Harry J M ; Dorrius, Monique D ; Oudkerk, Matthijs ; de Bock, Geertruida H ; Vliegenthart, Rozemarijn ; Ye, Zhaoxiang</creator><creatorcontrib>Cui, Xiaonan ; Heuvelmans, Marjolein A ; Sidorenkov, Grigory ; Zhao, Yingru ; Fan, Shuxuan ; Groen, Harry J M ; Dorrius, Monique D ; Oudkerk, Matthijs ; de Bock, Geertruida H ; Vliegenthart, Rozemarijn ; Ye, Zhaoxiang</creatorcontrib><description>To develop and validate a contrast-enhanced CT based classification tree model for classifying solid lung tumors in clinical patients into malignant or benign. Between January 2015 and October 2017, 827 pathologically confirmed solid lung tumors (487 malignant, 340 benign; median size, 27.0 mm, IQR 18.0-39.0 mm) from 827 patients from a dedicated Chinese cancer hospital were identified. Nodules were divided randomly into two groups, a training group (575 cases) and a testing group (252 cases). CT characteristics were collected by two radiologists, and analyzed using a classification and regression tree (CART) model. For validation, we used the decision analysis threshold to evaluate the classification performance of the CART model and radiologist's diagnosis (benign; malignant) in the testing group. Three out of 19 characteristics [margin (smooth; slightly lobulated/lobulated/spiculated), and shape (round/oval; irregular), subjective enhancement (no/uniform enhancement; heterogeneous enhancement)] were automatically generated by the CART model for classifying solid lung tumors. The sensitivity, specificity, PPV, NPV, and diagnostic accuracy of the CART model is 98.5%, 58.1%, 80.6%, 98.6%, 79.8%, and 90.4%, 54.7%, 82.4% 98.5%, 74.2% for the radiologist's diagnosis by using three-threshold decision analysis. Tumor margin and shape, and subjective tumor enhancement were the most important CT characteristics in the CART model for classifying solid lung tumors as malignant. The CART model had higher discriminatory power than radiologist's diagnosis. The CART model could help radiologists making recommendations regarding follow-up or surgery in clinical patients with a solid lung tumor.</description><identifier>ISSN: 2072-1439</identifier><identifier>EISSN: 2077-6624</identifier><identifier>DOI: 10.21037/jtd-21-588</identifier><identifier>PMID: 34422367</identifier><language>eng</language><publisher>China: AME Publishing Company</publisher><subject>Original</subject><ispartof>Journal of thoracic disease, 2021-07, Vol.13 (7), p.4407-4417</ispartof><rights>2021 Journal of Thoracic Disease. All rights reserved.</rights><rights>2021 Journal of Thoracic Disease. All rights reserved. 2021 Journal of Thoracic Disease.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-a4ab2708ef2544e0acb4e59e5bde612548d6cb14ad366c82dbe37542d4c61f753</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339765/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339765/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34422367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Xiaonan</creatorcontrib><creatorcontrib>Heuvelmans, Marjolein A</creatorcontrib><creatorcontrib>Sidorenkov, Grigory</creatorcontrib><creatorcontrib>Zhao, Yingru</creatorcontrib><creatorcontrib>Fan, Shuxuan</creatorcontrib><creatorcontrib>Groen, Harry J M</creatorcontrib><creatorcontrib>Dorrius, Monique D</creatorcontrib><creatorcontrib>Oudkerk, Matthijs</creatorcontrib><creatorcontrib>de Bock, Geertruida H</creatorcontrib><creatorcontrib>Vliegenthart, Rozemarijn</creatorcontrib><creatorcontrib>Ye, Zhaoxiang</creatorcontrib><title>A contrast-enhanced-CT-based classification tree model for classifying malignancy of solid lung tumors in a Chinese clinical population</title><title>Journal of thoracic disease</title><addtitle>J Thorac Dis</addtitle><description>To develop and validate a contrast-enhanced CT based classification tree model for classifying solid lung tumors in clinical patients into malignant or benign. Between January 2015 and October 2017, 827 pathologically confirmed solid lung tumors (487 malignant, 340 benign; median size, 27.0 mm, IQR 18.0-39.0 mm) from 827 patients from a dedicated Chinese cancer hospital were identified. Nodules were divided randomly into two groups, a training group (575 cases) and a testing group (252 cases). CT characteristics were collected by two radiologists, and analyzed using a classification and regression tree (CART) model. For validation, we used the decision analysis threshold to evaluate the classification performance of the CART model and radiologist's diagnosis (benign; malignant) in the testing group. Three out of 19 characteristics [margin (smooth; slightly lobulated/lobulated/spiculated), and shape (round/oval; irregular), subjective enhancement (no/uniform enhancement; heterogeneous enhancement)] were automatically generated by the CART model for classifying solid lung tumors. The sensitivity, specificity, PPV, NPV, and diagnostic accuracy of the CART model is 98.5%, 58.1%, 80.6%, 98.6%, 79.8%, and 90.4%, 54.7%, 82.4% 98.5%, 74.2% for the radiologist's diagnosis by using three-threshold decision analysis. Tumor margin and shape, and subjective tumor enhancement were the most important CT characteristics in the CART model for classifying solid lung tumors as malignant. The CART model had higher discriminatory power than radiologist's diagnosis. The CART model could help radiologists making recommendations regarding follow-up or surgery in clinical patients with a solid lung tumor.</description><subject>Original</subject><issn>2072-1439</issn><issn>2077-6624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkUtvGyEUhVHUKImcrLKvWFaqaIfHwHhTybLSh2Spm2SNGLhjEzHgwkwl_4L87WDnoZYNV5xzvwschG5p84XRhquvj5MjjJK2687QFWuUIlIy8eFUM0IFX16im1Iem7pkw5hSF-iSC8EYl-oKPa2wTXHKpkwE4s5EC46s70lvCjhsgynFD96ayaeIpwyAx-Qg4CHlN_Xg4xaPJvhtrO0HnAZcUvAOh7kK0zymXLCP2OD1zkcoUBt9rMyA92k_hxP7Gp0PJhS4ed0X6OH73f36J9n8_vFrvdoQyzs6ESNMz1TTwcBaIaAxthfQLqHtHUhazzonbU-FcVxK2zHXA1etYE5YSQfV8gX69sLdz_0IzsLx7UHvsx9NPuhkvP5fiX6nt-mv7jhfKnkEfHoF5PRnhjLp0RcLIZgIaS6atZKr-u2yq9bPL1abUykZhvcxtNGn9HRNr1a6plfdH_-92bv3LSv-DAOWmWM</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Cui, Xiaonan</creator><creator>Heuvelmans, Marjolein A</creator><creator>Sidorenkov, Grigory</creator><creator>Zhao, Yingru</creator><creator>Fan, Shuxuan</creator><creator>Groen, Harry J M</creator><creator>Dorrius, Monique D</creator><creator>Oudkerk, Matthijs</creator><creator>de Bock, Geertruida H</creator><creator>Vliegenthart, Rozemarijn</creator><creator>Ye, Zhaoxiang</creator><general>AME Publishing Company</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210701</creationdate><title>A contrast-enhanced-CT-based classification tree model for classifying malignancy of solid lung tumors in a Chinese clinical population</title><author>Cui, Xiaonan ; Heuvelmans, Marjolein A ; Sidorenkov, Grigory ; Zhao, Yingru ; Fan, Shuxuan ; Groen, Harry J M ; Dorrius, Monique D ; Oudkerk, Matthijs ; de Bock, Geertruida H ; Vliegenthart, Rozemarijn ; Ye, Zhaoxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-a4ab2708ef2544e0acb4e59e5bde612548d6cb14ad366c82dbe37542d4c61f753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Original</topic><toplevel>online_resources</toplevel><creatorcontrib>Cui, Xiaonan</creatorcontrib><creatorcontrib>Heuvelmans, Marjolein A</creatorcontrib><creatorcontrib>Sidorenkov, Grigory</creatorcontrib><creatorcontrib>Zhao, Yingru</creatorcontrib><creatorcontrib>Fan, Shuxuan</creatorcontrib><creatorcontrib>Groen, Harry J M</creatorcontrib><creatorcontrib>Dorrius, Monique D</creatorcontrib><creatorcontrib>Oudkerk, Matthijs</creatorcontrib><creatorcontrib>de Bock, Geertruida H</creatorcontrib><creatorcontrib>Vliegenthart, Rozemarijn</creatorcontrib><creatorcontrib>Ye, Zhaoxiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of thoracic disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Xiaonan</au><au>Heuvelmans, Marjolein A</au><au>Sidorenkov, Grigory</au><au>Zhao, Yingru</au><au>Fan, Shuxuan</au><au>Groen, Harry J M</au><au>Dorrius, Monique D</au><au>Oudkerk, Matthijs</au><au>de Bock, Geertruida H</au><au>Vliegenthart, Rozemarijn</au><au>Ye, Zhaoxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A contrast-enhanced-CT-based classification tree model for classifying malignancy of solid lung tumors in a Chinese clinical population</atitle><jtitle>Journal of thoracic disease</jtitle><addtitle>J Thorac Dis</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>13</volume><issue>7</issue><spage>4407</spage><epage>4417</epage><pages>4407-4417</pages><issn>2072-1439</issn><eissn>2077-6624</eissn><abstract>To develop and validate a contrast-enhanced CT based classification tree model for classifying solid lung tumors in clinical patients into malignant or benign. Between January 2015 and October 2017, 827 pathologically confirmed solid lung tumors (487 malignant, 340 benign; median size, 27.0 mm, IQR 18.0-39.0 mm) from 827 patients from a dedicated Chinese cancer hospital were identified. Nodules were divided randomly into two groups, a training group (575 cases) and a testing group (252 cases). CT characteristics were collected by two radiologists, and analyzed using a classification and regression tree (CART) model. For validation, we used the decision analysis threshold to evaluate the classification performance of the CART model and radiologist's diagnosis (benign; malignant) in the testing group. Three out of 19 characteristics [margin (smooth; slightly lobulated/lobulated/spiculated), and shape (round/oval; irregular), subjective enhancement (no/uniform enhancement; heterogeneous enhancement)] were automatically generated by the CART model for classifying solid lung tumors. The sensitivity, specificity, PPV, NPV, and diagnostic accuracy of the CART model is 98.5%, 58.1%, 80.6%, 98.6%, 79.8%, and 90.4%, 54.7%, 82.4% 98.5%, 74.2% for the radiologist's diagnosis by using three-threshold decision analysis. Tumor margin and shape, and subjective tumor enhancement were the most important CT characteristics in the CART model for classifying solid lung tumors as malignant. The CART model had higher discriminatory power than radiologist's diagnosis. The CART model could help radiologists making recommendations regarding follow-up or surgery in clinical patients with a solid lung tumor.</abstract><cop>China</cop><pub>AME Publishing Company</pub><pmid>34422367</pmid><doi>10.21037/jtd-21-588</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-1439
ispartof Journal of thoracic disease, 2021-07, Vol.13 (7), p.4407-4417
issn 2072-1439
2077-6624
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8339765
source PubMed Central
subjects Original
title A contrast-enhanced-CT-based classification tree model for classifying malignancy of solid lung tumors in a Chinese clinical population
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20contrast-enhanced-CT-based%20classification%20tree%20model%20for%20classifying%20malignancy%20of%20solid%20lung%20tumors%20in%20a%20Chinese%20clinical%20population&rft.jtitle=Journal%20of%20thoracic%20disease&rft.au=Cui,%20Xiaonan&rft.date=2021-07-01&rft.volume=13&rft.issue=7&rft.spage=4407&rft.epage=4417&rft.pages=4407-4417&rft.issn=2072-1439&rft.eissn=2077-6624&rft_id=info:doi/10.21037/jtd-21-588&rft_dat=%3Cproquest_pubme%3E2563714368%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-a4ab2708ef2544e0acb4e59e5bde612548d6cb14ad366c82dbe37542d4c61f753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2563714368&rft_id=info:pmid/34422367&rfr_iscdi=true