Loading…
Conducting decoded neurofeedback studies
Abstract Closed-loop neurofeedback has sparked great interest since its inception in the late 1960s. However, the field has historically faced various methodological challenges. Decoded fMRI neurofeedback may provide solutions to some of these problems. Notably, thanks to the recent advancements of...
Saved in:
Published in: | Social cognitive and affective neuroscience 2021-08, Vol.16 (8), p.838-848 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c583t-2ed104ecf7e51268dd0de56483dfd28f35c9a949ff99b47429ba467c4e606513 |
---|---|
cites | cdi_FETCH-LOGICAL-c583t-2ed104ecf7e51268dd0de56483dfd28f35c9a949ff99b47429ba467c4e606513 |
container_end_page | 848 |
container_issue | 8 |
container_start_page | 838 |
container_title | Social cognitive and affective neuroscience |
container_volume | 16 |
creator | Taschereau-Dumouchel, Vincent Cortese, Aurelio Lau, Hakwan Kawato, Mitsuo |
description | Abstract
Closed-loop neurofeedback has sparked great interest since its inception in the late 1960s. However, the field has historically faced various methodological challenges. Decoded fMRI neurofeedback may provide solutions to some of these problems. Notably, thanks to the recent advancements of machine learning approaches, it is now possible to target unconscious occurrences of specific multivoxel representations. In this tools of the trade paper, we discuss how to implement these interventions in rigorous double-blind placebo-controlled experiments. We aim to provide a step-by-step guide to address some of the most common methodological and analytical considerations. We also discuss tools that can be used to facilitate the implementation of new experiments. We hope that this will encourage more researchers to try out this powerful new intervention method. |
doi_str_mv | 10.1093/scan/nsaa063 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8343564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775957577</galeid><oup_id>10.1093/scan/nsaa063</oup_id><sourcerecordid>A775957577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-2ed104ecf7e51268dd0de56483dfd28f35c9a949ff99b47429ba467c4e606513</originalsourceid><addsrcrecordid>eNp90d1LWzEYB-AgEz93t-tR2IUOrOY7JzeClG0KgqDehzR502U7TbqTc0T_e1PaFQsiuUhInvcXkhehLwSfE6zZRXE2XaRiLZZsBx0QxfVYYMo_bdZE7qPDUv5gLDTHbA_tM8qkIqw5QKeTnPzg-phmIw8ue_CjBEOXA4CfWvd3VPrBRyjHaDfYtsDn9XyEHn_-eJxcj2_vft1Mrm7HTjSsH1PwBHNwQYEgVDbeYw9C8ob54GkTmHDaaq5D0HrKFad6arlUjoPEUhB2hC5XsYthOgfvIPWdbc2ii3PbvZhso9k-SfG3meUn0zDO6j014HQd0OV_A5TezGNx0LY2QR6KoUw3klKOm0q_rejMtmBiCrkmuiU3V0oJLZRQqqrzd1QdHubR5QQh1v2tgu9bBdX08NzP7FCKuXm437ZnK-u6XEoHYfNSgs2yvWbZXrNub-Vf3_7OBv_vZwUnK5CHxcdRr5UXraQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398622408</pqid></control><display><type>article</type><title>Conducting decoded neurofeedback studies</title><source>Open Access: PubMed Central</source><source>Open Access: Oxford University Press Open Journals</source><creator>Taschereau-Dumouchel, Vincent ; Cortese, Aurelio ; Lau, Hakwan ; Kawato, Mitsuo</creator><creatorcontrib>Taschereau-Dumouchel, Vincent ; Cortese, Aurelio ; Lau, Hakwan ; Kawato, Mitsuo</creatorcontrib><description>Abstract
Closed-loop neurofeedback has sparked great interest since its inception in the late 1960s. However, the field has historically faced various methodological challenges. Decoded fMRI neurofeedback may provide solutions to some of these problems. Notably, thanks to the recent advancements of machine learning approaches, it is now possible to target unconscious occurrences of specific multivoxel representations. In this tools of the trade paper, we discuss how to implement these interventions in rigorous double-blind placebo-controlled experiments. We aim to provide a step-by-step guide to address some of the most common methodological and analytical considerations. We also discuss tools that can be used to facilitate the implementation of new experiments. We hope that this will encourage more researchers to try out this powerful new intervention method.</description><identifier>ISSN: 1749-5016</identifier><identifier>ISSN: 1749-5024</identifier><identifier>EISSN: 1749-5024</identifier><identifier>DOI: 10.1093/scan/nsaa063</identifier><identifier>PMID: 32367138</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Biofeedback training ; Humans ; Machine Learning ; Magnetic Resonance Imaging ; Neurofeedback ; Original Manuscript</subject><ispartof>Social cognitive and affective neuroscience, 2021-08, Vol.16 (8), p.838-848</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-2ed104ecf7e51268dd0de56483dfd28f35c9a949ff99b47429ba467c4e606513</citedby><cites>FETCH-LOGICAL-c583t-2ed104ecf7e51268dd0de56483dfd28f35c9a949ff99b47429ba467c4e606513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343564/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343564/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32367138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taschereau-Dumouchel, Vincent</creatorcontrib><creatorcontrib>Cortese, Aurelio</creatorcontrib><creatorcontrib>Lau, Hakwan</creatorcontrib><creatorcontrib>Kawato, Mitsuo</creatorcontrib><title>Conducting decoded neurofeedback studies</title><title>Social cognitive and affective neuroscience</title><addtitle>Soc Cogn Affect Neurosci</addtitle><description>Abstract
Closed-loop neurofeedback has sparked great interest since its inception in the late 1960s. However, the field has historically faced various methodological challenges. Decoded fMRI neurofeedback may provide solutions to some of these problems. Notably, thanks to the recent advancements of machine learning approaches, it is now possible to target unconscious occurrences of specific multivoxel representations. In this tools of the trade paper, we discuss how to implement these interventions in rigorous double-blind placebo-controlled experiments. We aim to provide a step-by-step guide to address some of the most common methodological and analytical considerations. We also discuss tools that can be used to facilitate the implementation of new experiments. We hope that this will encourage more researchers to try out this powerful new intervention method.</description><subject>Biofeedback training</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Neurofeedback</subject><subject>Original Manuscript</subject><issn>1749-5016</issn><issn>1749-5024</issn><issn>1749-5024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp90d1LWzEYB-AgEz93t-tR2IUOrOY7JzeClG0KgqDehzR502U7TbqTc0T_e1PaFQsiuUhInvcXkhehLwSfE6zZRXE2XaRiLZZsBx0QxfVYYMo_bdZE7qPDUv5gLDTHbA_tM8qkIqw5QKeTnPzg-phmIw8ue_CjBEOXA4CfWvd3VPrBRyjHaDfYtsDn9XyEHn_-eJxcj2_vft1Mrm7HTjSsH1PwBHNwQYEgVDbeYw9C8ob54GkTmHDaaq5D0HrKFad6arlUjoPEUhB2hC5XsYthOgfvIPWdbc2ii3PbvZhso9k-SfG3meUn0zDO6j014HQd0OV_A5TezGNx0LY2QR6KoUw3klKOm0q_rejMtmBiCrkmuiU3V0oJLZRQqqrzd1QdHubR5QQh1v2tgu9bBdX08NzP7FCKuXm437ZnK-u6XEoHYfNSgs2yvWbZXrNub-Vf3_7OBv_vZwUnK5CHxcdRr5UXraQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Taschereau-Dumouchel, Vincent</creator><creator>Cortese, Aurelio</creator><creator>Lau, Hakwan</creator><creator>Kawato, Mitsuo</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210801</creationdate><title>Conducting decoded neurofeedback studies</title><author>Taschereau-Dumouchel, Vincent ; Cortese, Aurelio ; Lau, Hakwan ; Kawato, Mitsuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-2ed104ecf7e51268dd0de56483dfd28f35c9a949ff99b47429ba467c4e606513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biofeedback training</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Neurofeedback</topic><topic>Original Manuscript</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taschereau-Dumouchel, Vincent</creatorcontrib><creatorcontrib>Cortese, Aurelio</creatorcontrib><creatorcontrib>Lau, Hakwan</creatorcontrib><creatorcontrib>Kawato, Mitsuo</creatorcontrib><collection>Open Access: Oxford University Press Open Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Social cognitive and affective neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taschereau-Dumouchel, Vincent</au><au>Cortese, Aurelio</au><au>Lau, Hakwan</au><au>Kawato, Mitsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conducting decoded neurofeedback studies</atitle><jtitle>Social cognitive and affective neuroscience</jtitle><addtitle>Soc Cogn Affect Neurosci</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>16</volume><issue>8</issue><spage>838</spage><epage>848</epage><pages>838-848</pages><issn>1749-5016</issn><issn>1749-5024</issn><eissn>1749-5024</eissn><abstract>Abstract
Closed-loop neurofeedback has sparked great interest since its inception in the late 1960s. However, the field has historically faced various methodological challenges. Decoded fMRI neurofeedback may provide solutions to some of these problems. Notably, thanks to the recent advancements of machine learning approaches, it is now possible to target unconscious occurrences of specific multivoxel representations. In this tools of the trade paper, we discuss how to implement these interventions in rigorous double-blind placebo-controlled experiments. We aim to provide a step-by-step guide to address some of the most common methodological and analytical considerations. We also discuss tools that can be used to facilitate the implementation of new experiments. We hope that this will encourage more researchers to try out this powerful new intervention method.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32367138</pmid><doi>10.1093/scan/nsaa063</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-5016 |
ispartof | Social cognitive and affective neuroscience, 2021-08, Vol.16 (8), p.838-848 |
issn | 1749-5016 1749-5024 1749-5024 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8343564 |
source | Open Access: PubMed Central; Open Access: Oxford University Press Open Journals |
subjects | Biofeedback training Humans Machine Learning Magnetic Resonance Imaging Neurofeedback Original Manuscript |
title | Conducting decoded neurofeedback studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conducting%20decoded%20neurofeedback%20studies&rft.jtitle=Social%20cognitive%20and%20affective%20neuroscience&rft.au=Taschereau-Dumouchel,%20Vincent&rft.date=2021-08-01&rft.volume=16&rft.issue=8&rft.spage=838&rft.epage=848&rft.pages=838-848&rft.issn=1749-5016&rft.eissn=1749-5024&rft_id=info:doi/10.1093/scan/nsaa063&rft_dat=%3Cgale_pubme%3EA775957577%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583t-2ed104ecf7e51268dd0de56483dfd28f35c9a949ff99b47429ba467c4e606513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2398622408&rft_id=info:pmid/32367138&rft_galeid=A775957577&rft_oup_id=10.1093/scan/nsaa063&rfr_iscdi=true |