Loading…

Surface Modification of Nanocrystalline LiMn2O4 Using Graphene Oxide Flakes

In this work, a facile, wet chemical synthesis was utilized to achieve a series of lithium manganese oxide (LiMn2O4, (LMO) with 1–5%wt. graphene oxide (GO) composites. The average crystallite sizes estimated by the Rietveld method of LMO/GO nanocomposites were in the range of 18–27 nm. The electroch...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2021-07, Vol.14 (15), p.4134
Main Authors: Michalska, Monika, Buchberger, Dominika A., Jasiński, Jacek B., Thapa, Arjun K., Jain, Amrita
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-ad4ea20a7959fa8fb0f85c560afb6087779461bd87037c278a45e4cce24463ff3
cites cdi_FETCH-LOGICAL-c383t-ad4ea20a7959fa8fb0f85c560afb6087779461bd87037c278a45e4cce24463ff3
container_end_page
container_issue 15
container_start_page 4134
container_title Materials
container_volume 14
creator Michalska, Monika
Buchberger, Dominika A.
Jasiński, Jacek B.
Thapa, Arjun K.
Jain, Amrita
description In this work, a facile, wet chemical synthesis was utilized to achieve a series of lithium manganese oxide (LiMn2O4, (LMO) with 1–5%wt. graphene oxide (GO) composites. The average crystallite sizes estimated by the Rietveld method of LMO/GO nanocomposites were in the range of 18–27 nm. The electrochemical performance was studied using CR2013 coin-type cell batteries prepared from pristine LMO material and LMO modified with 5%wt. GO. Synthesized materials were tested as positive electrodes for Li-ion batteries in the voltage range between 3.0 and 4.3 V at room temperature. The specific discharge capacity after 100 cycles for LMO and LMO/5%wt. GO were 84 and 83 mAh g−1, respectively. The LMO material modified with 5%wt. of graphene oxide flakes retained more than 91% of its initial specific capacity, as compared with the 86% of pristine LMO material.
doi_str_mv 10.3390/ma14154134
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8347067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558846227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-ad4ea20a7959fa8fb0f85c560afb6087779461bd87037c278a45e4cce24463ff3</originalsourceid><addsrcrecordid>eNpdkUtPHDEMgKOqqCDgwi8YiUtVaWkSZ_K4VKoQC4ileyicI28mgdDZZJvMIPj3zApEH77Ysj99smVCjhg9ATD06xqZYK1gID6QPWaMnDEjxMe_6l1yWOsDnQKAaW4-kV0QIBlwvUeufo4loPPNde5iiA6HmFOTQ_MDU3bluQ7Y9zH5ZhGvE1-K5rbGdNecF9zc-6m9fIqdb-Y9_vL1gOwE7Ks_fMv75HZ-dnN6MVsszy9Pvy9mDjQMM-yER05RmdYE1GFFg25dKymGlaRaKWWEZKtOKwrKcaVRtF4457kQEkKAffLt1bsZV2vfOZ-Ggr3dlLjG8mwzRvvvJMV7e5cfrQahqFST4POboOTfo6-DXcfqfN9j8nmslretEQASYEKP_0Mf8ljSdN6W0lpIzrfCL6-UK7nW4sP7Moza7ZvsnzfBC0OvgoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558846227</pqid></control><display><type>article</type><title>Surface Modification of Nanocrystalline LiMn2O4 Using Graphene Oxide Flakes</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Michalska, Monika ; Buchberger, Dominika A. ; Jasiński, Jacek B. ; Thapa, Arjun K. ; Jain, Amrita</creator><creatorcontrib>Michalska, Monika ; Buchberger, Dominika A. ; Jasiński, Jacek B. ; Thapa, Arjun K. ; Jain, Amrita</creatorcontrib><description>In this work, a facile, wet chemical synthesis was utilized to achieve a series of lithium manganese oxide (LiMn2O4, (LMO) with 1–5%wt. graphene oxide (GO) composites. The average crystallite sizes estimated by the Rietveld method of LMO/GO nanocomposites were in the range of 18–27 nm. The electrochemical performance was studied using CR2013 coin-type cell batteries prepared from pristine LMO material and LMO modified with 5%wt. GO. Synthesized materials were tested as positive electrodes for Li-ion batteries in the voltage range between 3.0 and 4.3 V at room temperature. The specific discharge capacity after 100 cycles for LMO and LMO/5%wt. GO were 84 and 83 mAh g−1, respectively. The LMO material modified with 5%wt. of graphene oxide flakes retained more than 91% of its initial specific capacity, as compared with the 86% of pristine LMO material.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14154134</identifier><identifier>PMID: 34361328</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Chemical synthesis ; Composite materials ; Crystallites ; Electrochemical analysis ; Electrodes ; Electrolytes ; Energy industry ; Flakes ; Graphene ; Lithium ; Lithium manganese oxides ; Lithium-ion batteries ; Manganese ; Nanocomposites ; Phase transitions ; Rechargeable batteries ; Rietveld method ; Room temperature</subject><ispartof>Materials, 2021-07, Vol.14 (15), p.4134</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-ad4ea20a7959fa8fb0f85c560afb6087779461bd87037c278a45e4cce24463ff3</citedby><cites>FETCH-LOGICAL-c383t-ad4ea20a7959fa8fb0f85c560afb6087779461bd87037c278a45e4cce24463ff3</cites><orcidid>0000-0002-1297-6145 ; 0000-0001-7657-8974 ; 0000-0002-6120-4950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2558846227/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2558846227?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Michalska, Monika</creatorcontrib><creatorcontrib>Buchberger, Dominika A.</creatorcontrib><creatorcontrib>Jasiński, Jacek B.</creatorcontrib><creatorcontrib>Thapa, Arjun K.</creatorcontrib><creatorcontrib>Jain, Amrita</creatorcontrib><title>Surface Modification of Nanocrystalline LiMn2O4 Using Graphene Oxide Flakes</title><title>Materials</title><description>In this work, a facile, wet chemical synthesis was utilized to achieve a series of lithium manganese oxide (LiMn2O4, (LMO) with 1–5%wt. graphene oxide (GO) composites. The average crystallite sizes estimated by the Rietveld method of LMO/GO nanocomposites were in the range of 18–27 nm. The electrochemical performance was studied using CR2013 coin-type cell batteries prepared from pristine LMO material and LMO modified with 5%wt. GO. Synthesized materials were tested as positive electrodes for Li-ion batteries in the voltage range between 3.0 and 4.3 V at room temperature. The specific discharge capacity after 100 cycles for LMO and LMO/5%wt. GO were 84 and 83 mAh g−1, respectively. The LMO material modified with 5%wt. of graphene oxide flakes retained more than 91% of its initial specific capacity, as compared with the 86% of pristine LMO material.</description><subject>Alternative energy sources</subject><subject>Chemical synthesis</subject><subject>Composite materials</subject><subject>Crystallites</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy industry</subject><subject>Flakes</subject><subject>Graphene</subject><subject>Lithium</subject><subject>Lithium manganese oxides</subject><subject>Lithium-ion batteries</subject><subject>Manganese</subject><subject>Nanocomposites</subject><subject>Phase transitions</subject><subject>Rechargeable batteries</subject><subject>Rietveld method</subject><subject>Room temperature</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUtPHDEMgKOqqCDgwi8YiUtVaWkSZ_K4VKoQC4ileyicI28mgdDZZJvMIPj3zApEH77Ysj99smVCjhg9ATD06xqZYK1gID6QPWaMnDEjxMe_6l1yWOsDnQKAaW4-kV0QIBlwvUeufo4loPPNde5iiA6HmFOTQ_MDU3bluQ7Y9zH5ZhGvE1-K5rbGdNecF9zc-6m9fIqdb-Y9_vL1gOwE7Ks_fMv75HZ-dnN6MVsszy9Pvy9mDjQMM-yER05RmdYE1GFFg25dKymGlaRaKWWEZKtOKwrKcaVRtF4457kQEkKAffLt1bsZV2vfOZ-Ggr3dlLjG8mwzRvvvJMV7e5cfrQahqFST4POboOTfo6-DXcfqfN9j8nmslretEQASYEKP_0Mf8ljSdN6W0lpIzrfCL6-UK7nW4sP7Moza7ZvsnzfBC0OvgoQ</recordid><startdate>20210724</startdate><enddate>20210724</enddate><creator>Michalska, Monika</creator><creator>Buchberger, Dominika A.</creator><creator>Jasiński, Jacek B.</creator><creator>Thapa, Arjun K.</creator><creator>Jain, Amrita</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1297-6145</orcidid><orcidid>https://orcid.org/0000-0001-7657-8974</orcidid><orcidid>https://orcid.org/0000-0002-6120-4950</orcidid></search><sort><creationdate>20210724</creationdate><title>Surface Modification of Nanocrystalline LiMn2O4 Using Graphene Oxide Flakes</title><author>Michalska, Monika ; Buchberger, Dominika A. ; Jasiński, Jacek B. ; Thapa, Arjun K. ; Jain, Amrita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-ad4ea20a7959fa8fb0f85c560afb6087779461bd87037c278a45e4cce24463ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternative energy sources</topic><topic>Chemical synthesis</topic><topic>Composite materials</topic><topic>Crystallites</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy industry</topic><topic>Flakes</topic><topic>Graphene</topic><topic>Lithium</topic><topic>Lithium manganese oxides</topic><topic>Lithium-ion batteries</topic><topic>Manganese</topic><topic>Nanocomposites</topic><topic>Phase transitions</topic><topic>Rechargeable batteries</topic><topic>Rietveld method</topic><topic>Room temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalska, Monika</creatorcontrib><creatorcontrib>Buchberger, Dominika A.</creatorcontrib><creatorcontrib>Jasiński, Jacek B.</creatorcontrib><creatorcontrib>Thapa, Arjun K.</creatorcontrib><creatorcontrib>Jain, Amrita</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalska, Monika</au><au>Buchberger, Dominika A.</au><au>Jasiński, Jacek B.</au><au>Thapa, Arjun K.</au><au>Jain, Amrita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Modification of Nanocrystalline LiMn2O4 Using Graphene Oxide Flakes</atitle><jtitle>Materials</jtitle><date>2021-07-24</date><risdate>2021</risdate><volume>14</volume><issue>15</issue><spage>4134</spage><pages>4134-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this work, a facile, wet chemical synthesis was utilized to achieve a series of lithium manganese oxide (LiMn2O4, (LMO) with 1–5%wt. graphene oxide (GO) composites. The average crystallite sizes estimated by the Rietveld method of LMO/GO nanocomposites were in the range of 18–27 nm. The electrochemical performance was studied using CR2013 coin-type cell batteries prepared from pristine LMO material and LMO modified with 5%wt. GO. Synthesized materials were tested as positive electrodes for Li-ion batteries in the voltage range between 3.0 and 4.3 V at room temperature. The specific discharge capacity after 100 cycles for LMO and LMO/5%wt. GO were 84 and 83 mAh g−1, respectively. The LMO material modified with 5%wt. of graphene oxide flakes retained more than 91% of its initial specific capacity, as compared with the 86% of pristine LMO material.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34361328</pmid><doi>10.3390/ma14154134</doi><orcidid>https://orcid.org/0000-0002-1297-6145</orcidid><orcidid>https://orcid.org/0000-0001-7657-8974</orcidid><orcidid>https://orcid.org/0000-0002-6120-4950</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-07, Vol.14 (15), p.4134
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8347067
source Open Access: PubMed Central; Publicly Available Content Database; Full-Text Journals in Chemistry (Open access)
subjects Alternative energy sources
Chemical synthesis
Composite materials
Crystallites
Electrochemical analysis
Electrodes
Electrolytes
Energy industry
Flakes
Graphene
Lithium
Lithium manganese oxides
Lithium-ion batteries
Manganese
Nanocomposites
Phase transitions
Rechargeable batteries
Rietveld method
Room temperature
title Surface Modification of Nanocrystalline LiMn2O4 Using Graphene Oxide Flakes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Modification%20of%20Nanocrystalline%20LiMn2O4%20Using%20Graphene%20Oxide%20Flakes&rft.jtitle=Materials&rft.au=Michalska,%20Monika&rft.date=2021-07-24&rft.volume=14&rft.issue=15&rft.spage=4134&rft.pages=4134-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14154134&rft_dat=%3Cproquest_pubme%3E2558846227%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-ad4ea20a7959fa8fb0f85c560afb6087779461bd87037c278a45e4cce24463ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2558846227&rft_id=info:pmid/34361328&rfr_iscdi=true