Loading…

Structure and Thermodynamics of Silicon Oxycarbide Polymer-Derived Ceramics with and without Mixed-Bonding

Silicon oxycarbides synthesized through a conventional polymeric route show characteristic nanodomains that consist of sp2 hybridized carbon, tetrahedrally coordinated SiO4, and tetrahedrally coordinated silicon with carbon substitution for oxygen, called “mixed bonds.” Here we synthesize two precer...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2021-07, Vol.14 (15), p.4075
Main Authors: Sugie, Casey, Navrotsky, Alexandra, Lauterbach, Stefan, Kleebe, Hans-Joachim, Mera, Gabriela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-701f33d25f25925e74b4a92122c415254a494194e1fc7c34bb21e6f986bf94ee3
cites cdi_FETCH-LOGICAL-c383t-701f33d25f25925e74b4a92122c415254a494194e1fc7c34bb21e6f986bf94ee3
container_end_page
container_issue 15
container_start_page 4075
container_title Materials
container_volume 14
creator Sugie, Casey
Navrotsky, Alexandra
Lauterbach, Stefan
Kleebe, Hans-Joachim
Mera, Gabriela
description Silicon oxycarbides synthesized through a conventional polymeric route show characteristic nanodomains that consist of sp2 hybridized carbon, tetrahedrally coordinated SiO4, and tetrahedrally coordinated silicon with carbon substitution for oxygen, called “mixed bonds.” Here we synthesize two preceramic polymers possessing both phenyl substituents as unique organic groups. In one precursor, the phenyl group is directly bonded to silicon, resulting in a SiOC polymer-derived ceramic (PDC) with mixed bonding. In the other precursor, the phenyl group is bonded to the silicon through Si-O-C bridges, which results in a SiOC PDC without mixed bonding. Radial breathing-like mode bands in the Raman spectra reveal that SiOC PDCs contain carbon nanoscrolls with spiral-like rolled-up geometry and open edges at the ends of their structure. Calorimetric measurements of the heat of dissolution in a molten salt solvent show that the SiOC PDCs with mixed bonding have negative enthalpies of formation with respect to crystalline components (silicon carbide, cristobalite, and graphite) and are more thermodynamically stable than those without. The heats of formation from crystalline SiO2, SiC, and C of SiOC PDCs without mixed bonding are close to zero and depend on the pyrolysis temperature. Solid state MAS NMR confirms the presence or absence of mixed bonding and further shows that, without mixed bonding, terminal hydroxyls are bound to some of the Si-O tetrahedra. This study indicates that mixed bonding, along with additional factors, such as the presence of terminal hydroxyl groups, contributes to the thermodynamic stability of SiOC PDCs.
doi_str_mv 10.3390/ma14154075
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8347565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558846634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-701f33d25f25925e74b4a92122c415254a494194e1fc7c34bb21e6f986bf94ee3</originalsourceid><addsrcrecordid>eNpdkdtKxDAQhoMoKqs3PkHBGxGqzbHNjaDrEZQVVq9Dmk7dLG2iSavu29t1xdPczDDz8TP_DEJ7ODuiVGbHrcYMc5blfA1tYylFiiVj67_qLbQb4zwbglJcELmJtiijAhMht9F82oXedH2ARLsqeZhBaH21cLq1Jia-Tqa2sca7ZPK-MDqUtoLk3jeLFkJ6DsG-QpWMIazwN9vNPmWWhe-75M6-Q5WeeVdZ97SDNmrdRNj9yiP0eHnxML5ObydXN-PT29TQgnZpnuGa0orwmnBJOOSsZFoSTIgZjBLONJNs8AW4NrmhrCwJBlHLQpT10AU6Qicr3ee-bKEy4LqgG_UcbKvDQnlt1d-JszP15F9VQVnOBR8EDr4Egn_pIXaqtdFA02gHvo-KcC4ZxTwXA7r_D537PrjB3pIqCibEcOsROlxRJvgYA9Tfy-BMLb-ofr5IPwDj9o5d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558846634</pqid></control><display><type>article</type><title>Structure and Thermodynamics of Silicon Oxycarbide Polymer-Derived Ceramics with and without Mixed-Bonding</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><creator>Sugie, Casey ; Navrotsky, Alexandra ; Lauterbach, Stefan ; Kleebe, Hans-Joachim ; Mera, Gabriela</creator><creatorcontrib>Sugie, Casey ; Navrotsky, Alexandra ; Lauterbach, Stefan ; Kleebe, Hans-Joachim ; Mera, Gabriela</creatorcontrib><description>Silicon oxycarbides synthesized through a conventional polymeric route show characteristic nanodomains that consist of sp2 hybridized carbon, tetrahedrally coordinated SiO4, and tetrahedrally coordinated silicon with carbon substitution for oxygen, called “mixed bonds.” Here we synthesize two preceramic polymers possessing both phenyl substituents as unique organic groups. In one precursor, the phenyl group is directly bonded to silicon, resulting in a SiOC polymer-derived ceramic (PDC) with mixed bonding. In the other precursor, the phenyl group is bonded to the silicon through Si-O-C bridges, which results in a SiOC PDC without mixed bonding. Radial breathing-like mode bands in the Raman spectra reveal that SiOC PDCs contain carbon nanoscrolls with spiral-like rolled-up geometry and open edges at the ends of their structure. Calorimetric measurements of the heat of dissolution in a molten salt solvent show that the SiOC PDCs with mixed bonding have negative enthalpies of formation with respect to crystalline components (silicon carbide, cristobalite, and graphite) and are more thermodynamically stable than those without. The heats of formation from crystalline SiO2, SiC, and C of SiOC PDCs without mixed bonding are close to zero and depend on the pyrolysis temperature. Solid state MAS NMR confirms the presence or absence of mixed bonding and further shows that, without mixed bonding, terminal hydroxyls are bound to some of the Si-O tetrahedra. This study indicates that mixed bonding, along with additional factors, such as the presence of terminal hydroxyl groups, contributes to the thermodynamic stability of SiOC PDCs.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14154075</identifier><identifier>PMID: 34361269</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon ; Ceramic bonding ; Ceramics ; Cristobalite ; Crystal structure ; Crystallinity ; Enthalpy ; Heat of formation ; Heat of solution ; High temperature ; Hydroxyl groups ; Interfacial bonding ; Molten salts ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Oxycarbides ; Polymers ; Precursors ; Pyrolysis ; Raman spectra ; Silicon carbide ; Silicon dioxide ; Spectrum analysis ; Tetrahedra ; Transmission electron microscopy</subject><ispartof>Materials, 2021-07, Vol.14 (15), p.4075</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-701f33d25f25925e74b4a92122c415254a494194e1fc7c34bb21e6f986bf94ee3</citedby><cites>FETCH-LOGICAL-c383t-701f33d25f25925e74b4a92122c415254a494194e1fc7c34bb21e6f986bf94ee3</cites><orcidid>0000-0002-7489-2983 ; 0000-0002-9325-8769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2558846634/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2558846634?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Sugie, Casey</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Lauterbach, Stefan</creatorcontrib><creatorcontrib>Kleebe, Hans-Joachim</creatorcontrib><creatorcontrib>Mera, Gabriela</creatorcontrib><title>Structure and Thermodynamics of Silicon Oxycarbide Polymer-Derived Ceramics with and without Mixed-Bonding</title><title>Materials</title><description>Silicon oxycarbides synthesized through a conventional polymeric route show characteristic nanodomains that consist of sp2 hybridized carbon, tetrahedrally coordinated SiO4, and tetrahedrally coordinated silicon with carbon substitution for oxygen, called “mixed bonds.” Here we synthesize two preceramic polymers possessing both phenyl substituents as unique organic groups. In one precursor, the phenyl group is directly bonded to silicon, resulting in a SiOC polymer-derived ceramic (PDC) with mixed bonding. In the other precursor, the phenyl group is bonded to the silicon through Si-O-C bridges, which results in a SiOC PDC without mixed bonding. Radial breathing-like mode bands in the Raman spectra reveal that SiOC PDCs contain carbon nanoscrolls with spiral-like rolled-up geometry and open edges at the ends of their structure. Calorimetric measurements of the heat of dissolution in a molten salt solvent show that the SiOC PDCs with mixed bonding have negative enthalpies of formation with respect to crystalline components (silicon carbide, cristobalite, and graphite) and are more thermodynamically stable than those without. The heats of formation from crystalline SiO2, SiC, and C of SiOC PDCs without mixed bonding are close to zero and depend on the pyrolysis temperature. Solid state MAS NMR confirms the presence or absence of mixed bonding and further shows that, without mixed bonding, terminal hydroxyls are bound to some of the Si-O tetrahedra. This study indicates that mixed bonding, along with additional factors, such as the presence of terminal hydroxyl groups, contributes to the thermodynamic stability of SiOC PDCs.</description><subject>Carbon</subject><subject>Ceramic bonding</subject><subject>Ceramics</subject><subject>Cristobalite</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Enthalpy</subject><subject>Heat of formation</subject><subject>Heat of solution</subject><subject>High temperature</subject><subject>Hydroxyl groups</subject><subject>Interfacial bonding</subject><subject>Molten salts</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Oxycarbides</subject><subject>Polymers</subject><subject>Precursors</subject><subject>Pyrolysis</subject><subject>Raman spectra</subject><subject>Silicon carbide</subject><subject>Silicon dioxide</subject><subject>Spectrum analysis</subject><subject>Tetrahedra</subject><subject>Transmission electron microscopy</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkdtKxDAQhoMoKqs3PkHBGxGqzbHNjaDrEZQVVq9Dmk7dLG2iSavu29t1xdPczDDz8TP_DEJ7ODuiVGbHrcYMc5blfA1tYylFiiVj67_qLbQb4zwbglJcELmJtiijAhMht9F82oXedH2ARLsqeZhBaH21cLq1Jia-Tqa2sca7ZPK-MDqUtoLk3jeLFkJ6DsG-QpWMIazwN9vNPmWWhe-75M6-Q5WeeVdZ97SDNmrdRNj9yiP0eHnxML5ObydXN-PT29TQgnZpnuGa0orwmnBJOOSsZFoSTIgZjBLONJNs8AW4NrmhrCwJBlHLQpT10AU6Qicr3ee-bKEy4LqgG_UcbKvDQnlt1d-JszP15F9VQVnOBR8EDr4Egn_pIXaqtdFA02gHvo-KcC4ZxTwXA7r_D537PrjB3pIqCibEcOsROlxRJvgYA9Tfy-BMLb-ofr5IPwDj9o5d</recordid><startdate>20210722</startdate><enddate>20210722</enddate><creator>Sugie, Casey</creator><creator>Navrotsky, Alexandra</creator><creator>Lauterbach, Stefan</creator><creator>Kleebe, Hans-Joachim</creator><creator>Mera, Gabriela</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7489-2983</orcidid><orcidid>https://orcid.org/0000-0002-9325-8769</orcidid></search><sort><creationdate>20210722</creationdate><title>Structure and Thermodynamics of Silicon Oxycarbide Polymer-Derived Ceramics with and without Mixed-Bonding</title><author>Sugie, Casey ; Navrotsky, Alexandra ; Lauterbach, Stefan ; Kleebe, Hans-Joachim ; Mera, Gabriela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-701f33d25f25925e74b4a92122c415254a494194e1fc7c34bb21e6f986bf94ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Ceramic bonding</topic><topic>Ceramics</topic><topic>Cristobalite</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Enthalpy</topic><topic>Heat of formation</topic><topic>Heat of solution</topic><topic>High temperature</topic><topic>Hydroxyl groups</topic><topic>Interfacial bonding</topic><topic>Molten salts</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Oxycarbides</topic><topic>Polymers</topic><topic>Precursors</topic><topic>Pyrolysis</topic><topic>Raman spectra</topic><topic>Silicon carbide</topic><topic>Silicon dioxide</topic><topic>Spectrum analysis</topic><topic>Tetrahedra</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugie, Casey</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Lauterbach, Stefan</creatorcontrib><creatorcontrib>Kleebe, Hans-Joachim</creatorcontrib><creatorcontrib>Mera, Gabriela</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugie, Casey</au><au>Navrotsky, Alexandra</au><au>Lauterbach, Stefan</au><au>Kleebe, Hans-Joachim</au><au>Mera, Gabriela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Thermodynamics of Silicon Oxycarbide Polymer-Derived Ceramics with and without Mixed-Bonding</atitle><jtitle>Materials</jtitle><date>2021-07-22</date><risdate>2021</risdate><volume>14</volume><issue>15</issue><spage>4075</spage><pages>4075-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Silicon oxycarbides synthesized through a conventional polymeric route show characteristic nanodomains that consist of sp2 hybridized carbon, tetrahedrally coordinated SiO4, and tetrahedrally coordinated silicon with carbon substitution for oxygen, called “mixed bonds.” Here we synthesize two preceramic polymers possessing both phenyl substituents as unique organic groups. In one precursor, the phenyl group is directly bonded to silicon, resulting in a SiOC polymer-derived ceramic (PDC) with mixed bonding. In the other precursor, the phenyl group is bonded to the silicon through Si-O-C bridges, which results in a SiOC PDC without mixed bonding. Radial breathing-like mode bands in the Raman spectra reveal that SiOC PDCs contain carbon nanoscrolls with spiral-like rolled-up geometry and open edges at the ends of their structure. Calorimetric measurements of the heat of dissolution in a molten salt solvent show that the SiOC PDCs with mixed bonding have negative enthalpies of formation with respect to crystalline components (silicon carbide, cristobalite, and graphite) and are more thermodynamically stable than those without. The heats of formation from crystalline SiO2, SiC, and C of SiOC PDCs without mixed bonding are close to zero and depend on the pyrolysis temperature. Solid state MAS NMR confirms the presence or absence of mixed bonding and further shows that, without mixed bonding, terminal hydroxyls are bound to some of the Si-O tetrahedra. This study indicates that mixed bonding, along with additional factors, such as the presence of terminal hydroxyl groups, contributes to the thermodynamic stability of SiOC PDCs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34361269</pmid><doi>10.3390/ma14154075</doi><orcidid>https://orcid.org/0000-0002-7489-2983</orcidid><orcidid>https://orcid.org/0000-0002-9325-8769</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-07, Vol.14 (15), p.4075
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8347565
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central
subjects Carbon
Ceramic bonding
Ceramics
Cristobalite
Crystal structure
Crystallinity
Enthalpy
Heat of formation
Heat of solution
High temperature
Hydroxyl groups
Interfacial bonding
Molten salts
NMR
NMR spectroscopy
Nuclear magnetic resonance
Oxycarbides
Polymers
Precursors
Pyrolysis
Raman spectra
Silicon carbide
Silicon dioxide
Spectrum analysis
Tetrahedra
Transmission electron microscopy
title Structure and Thermodynamics of Silicon Oxycarbide Polymer-Derived Ceramics with and without Mixed-Bonding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Thermodynamics%20of%20Silicon%20Oxycarbide%20Polymer-Derived%20Ceramics%20with%20and%20without%20Mixed-Bonding&rft.jtitle=Materials&rft.au=Sugie,%20Casey&rft.date=2021-07-22&rft.volume=14&rft.issue=15&rft.spage=4075&rft.pages=4075-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14154075&rft_dat=%3Cproquest_pubme%3E2558846634%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-701f33d25f25925e74b4a92122c415254a494194e1fc7c34bb21e6f986bf94ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2558846634&rft_id=info:pmid/34361269&rfr_iscdi=true