Loading…
Structure and Thermodynamics of Silicon Oxycarbide Polymer-Derived Ceramics with and without Mixed-Bonding
Silicon oxycarbides synthesized through a conventional polymeric route show characteristic nanodomains that consist of sp2 hybridized carbon, tetrahedrally coordinated SiO4, and tetrahedrally coordinated silicon with carbon substitution for oxygen, called “mixed bonds.” Here we synthesize two precer...
Saved in:
Published in: | Materials 2021-07, Vol.14 (15), p.4075 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-701f33d25f25925e74b4a92122c415254a494194e1fc7c34bb21e6f986bf94ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-701f33d25f25925e74b4a92122c415254a494194e1fc7c34bb21e6f986bf94ee3 |
container_end_page | |
container_issue | 15 |
container_start_page | 4075 |
container_title | Materials |
container_volume | 14 |
creator | Sugie, Casey Navrotsky, Alexandra Lauterbach, Stefan Kleebe, Hans-Joachim Mera, Gabriela |
description | Silicon oxycarbides synthesized through a conventional polymeric route show characteristic nanodomains that consist of sp2 hybridized carbon, tetrahedrally coordinated SiO4, and tetrahedrally coordinated silicon with carbon substitution for oxygen, called “mixed bonds.” Here we synthesize two preceramic polymers possessing both phenyl substituents as unique organic groups. In one precursor, the phenyl group is directly bonded to silicon, resulting in a SiOC polymer-derived ceramic (PDC) with mixed bonding. In the other precursor, the phenyl group is bonded to the silicon through Si-O-C bridges, which results in a SiOC PDC without mixed bonding. Radial breathing-like mode bands in the Raman spectra reveal that SiOC PDCs contain carbon nanoscrolls with spiral-like rolled-up geometry and open edges at the ends of their structure. Calorimetric measurements of the heat of dissolution in a molten salt solvent show that the SiOC PDCs with mixed bonding have negative enthalpies of formation with respect to crystalline components (silicon carbide, cristobalite, and graphite) and are more thermodynamically stable than those without. The heats of formation from crystalline SiO2, SiC, and C of SiOC PDCs without mixed bonding are close to zero and depend on the pyrolysis temperature. Solid state MAS NMR confirms the presence or absence of mixed bonding and further shows that, without mixed bonding, terminal hydroxyls are bound to some of the Si-O tetrahedra. This study indicates that mixed bonding, along with additional factors, such as the presence of terminal hydroxyl groups, contributes to the thermodynamic stability of SiOC PDCs. |
doi_str_mv | 10.3390/ma14154075 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8347565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558846634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-701f33d25f25925e74b4a92122c415254a494194e1fc7c34bb21e6f986bf94ee3</originalsourceid><addsrcrecordid>eNpdkdtKxDAQhoMoKqs3PkHBGxGqzbHNjaDrEZQVVq9Dmk7dLG2iSavu29t1xdPczDDz8TP_DEJ7ODuiVGbHrcYMc5blfA1tYylFiiVj67_qLbQb4zwbglJcELmJtiijAhMht9F82oXedH2ARLsqeZhBaH21cLq1Jia-Tqa2sca7ZPK-MDqUtoLk3jeLFkJ6DsG-QpWMIazwN9vNPmWWhe-75M6-Q5WeeVdZ97SDNmrdRNj9yiP0eHnxML5ObydXN-PT29TQgnZpnuGa0orwmnBJOOSsZFoSTIgZjBLONJNs8AW4NrmhrCwJBlHLQpT10AU6Qicr3ee-bKEy4LqgG_UcbKvDQnlt1d-JszP15F9VQVnOBR8EDr4Egn_pIXaqtdFA02gHvo-KcC4ZxTwXA7r_D537PrjB3pIqCibEcOsROlxRJvgYA9Tfy-BMLb-ofr5IPwDj9o5d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558846634</pqid></control><display><type>article</type><title>Structure and Thermodynamics of Silicon Oxycarbide Polymer-Derived Ceramics with and without Mixed-Bonding</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><creator>Sugie, Casey ; Navrotsky, Alexandra ; Lauterbach, Stefan ; Kleebe, Hans-Joachim ; Mera, Gabriela</creator><creatorcontrib>Sugie, Casey ; Navrotsky, Alexandra ; Lauterbach, Stefan ; Kleebe, Hans-Joachim ; Mera, Gabriela</creatorcontrib><description>Silicon oxycarbides synthesized through a conventional polymeric route show characteristic nanodomains that consist of sp2 hybridized carbon, tetrahedrally coordinated SiO4, and tetrahedrally coordinated silicon with carbon substitution for oxygen, called “mixed bonds.” Here we synthesize two preceramic polymers possessing both phenyl substituents as unique organic groups. In one precursor, the phenyl group is directly bonded to silicon, resulting in a SiOC polymer-derived ceramic (PDC) with mixed bonding. In the other precursor, the phenyl group is bonded to the silicon through Si-O-C bridges, which results in a SiOC PDC without mixed bonding. Radial breathing-like mode bands in the Raman spectra reveal that SiOC PDCs contain carbon nanoscrolls with spiral-like rolled-up geometry and open edges at the ends of their structure. Calorimetric measurements of the heat of dissolution in a molten salt solvent show that the SiOC PDCs with mixed bonding have negative enthalpies of formation with respect to crystalline components (silicon carbide, cristobalite, and graphite) and are more thermodynamically stable than those without. The heats of formation from crystalline SiO2, SiC, and C of SiOC PDCs without mixed bonding are close to zero and depend on the pyrolysis temperature. Solid state MAS NMR confirms the presence or absence of mixed bonding and further shows that, without mixed bonding, terminal hydroxyls are bound to some of the Si-O tetrahedra. This study indicates that mixed bonding, along with additional factors, such as the presence of terminal hydroxyl groups, contributes to the thermodynamic stability of SiOC PDCs.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14154075</identifier><identifier>PMID: 34361269</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon ; Ceramic bonding ; Ceramics ; Cristobalite ; Crystal structure ; Crystallinity ; Enthalpy ; Heat of formation ; Heat of solution ; High temperature ; Hydroxyl groups ; Interfacial bonding ; Molten salts ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Oxycarbides ; Polymers ; Precursors ; Pyrolysis ; Raman spectra ; Silicon carbide ; Silicon dioxide ; Spectrum analysis ; Tetrahedra ; Transmission electron microscopy</subject><ispartof>Materials, 2021-07, Vol.14 (15), p.4075</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-701f33d25f25925e74b4a92122c415254a494194e1fc7c34bb21e6f986bf94ee3</citedby><cites>FETCH-LOGICAL-c383t-701f33d25f25925e74b4a92122c415254a494194e1fc7c34bb21e6f986bf94ee3</cites><orcidid>0000-0002-7489-2983 ; 0000-0002-9325-8769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2558846634/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2558846634?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Sugie, Casey</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Lauterbach, Stefan</creatorcontrib><creatorcontrib>Kleebe, Hans-Joachim</creatorcontrib><creatorcontrib>Mera, Gabriela</creatorcontrib><title>Structure and Thermodynamics of Silicon Oxycarbide Polymer-Derived Ceramics with and without Mixed-Bonding</title><title>Materials</title><description>Silicon oxycarbides synthesized through a conventional polymeric route show characteristic nanodomains that consist of sp2 hybridized carbon, tetrahedrally coordinated SiO4, and tetrahedrally coordinated silicon with carbon substitution for oxygen, called “mixed bonds.” Here we synthesize two preceramic polymers possessing both phenyl substituents as unique organic groups. In one precursor, the phenyl group is directly bonded to silicon, resulting in a SiOC polymer-derived ceramic (PDC) with mixed bonding. In the other precursor, the phenyl group is bonded to the silicon through Si-O-C bridges, which results in a SiOC PDC without mixed bonding. Radial breathing-like mode bands in the Raman spectra reveal that SiOC PDCs contain carbon nanoscrolls with spiral-like rolled-up geometry and open edges at the ends of their structure. Calorimetric measurements of the heat of dissolution in a molten salt solvent show that the SiOC PDCs with mixed bonding have negative enthalpies of formation with respect to crystalline components (silicon carbide, cristobalite, and graphite) and are more thermodynamically stable than those without. The heats of formation from crystalline SiO2, SiC, and C of SiOC PDCs without mixed bonding are close to zero and depend on the pyrolysis temperature. Solid state MAS NMR confirms the presence or absence of mixed bonding and further shows that, without mixed bonding, terminal hydroxyls are bound to some of the Si-O tetrahedra. This study indicates that mixed bonding, along with additional factors, such as the presence of terminal hydroxyl groups, contributes to the thermodynamic stability of SiOC PDCs.</description><subject>Carbon</subject><subject>Ceramic bonding</subject><subject>Ceramics</subject><subject>Cristobalite</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Enthalpy</subject><subject>Heat of formation</subject><subject>Heat of solution</subject><subject>High temperature</subject><subject>Hydroxyl groups</subject><subject>Interfacial bonding</subject><subject>Molten salts</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Oxycarbides</subject><subject>Polymers</subject><subject>Precursors</subject><subject>Pyrolysis</subject><subject>Raman spectra</subject><subject>Silicon carbide</subject><subject>Silicon dioxide</subject><subject>Spectrum analysis</subject><subject>Tetrahedra</subject><subject>Transmission electron microscopy</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkdtKxDAQhoMoKqs3PkHBGxGqzbHNjaDrEZQVVq9Dmk7dLG2iSavu29t1xdPczDDz8TP_DEJ7ODuiVGbHrcYMc5blfA1tYylFiiVj67_qLbQb4zwbglJcELmJtiijAhMht9F82oXedH2ARLsqeZhBaH21cLq1Jia-Tqa2sca7ZPK-MDqUtoLk3jeLFkJ6DsG-QpWMIazwN9vNPmWWhe-75M6-Q5WeeVdZ97SDNmrdRNj9yiP0eHnxML5ObydXN-PT29TQgnZpnuGa0orwmnBJOOSsZFoSTIgZjBLONJNs8AW4NrmhrCwJBlHLQpT10AU6Qicr3ee-bKEy4LqgG_UcbKvDQnlt1d-JszP15F9VQVnOBR8EDr4Egn_pIXaqtdFA02gHvo-KcC4ZxTwXA7r_D537PrjB3pIqCibEcOsROlxRJvgYA9Tfy-BMLb-ofr5IPwDj9o5d</recordid><startdate>20210722</startdate><enddate>20210722</enddate><creator>Sugie, Casey</creator><creator>Navrotsky, Alexandra</creator><creator>Lauterbach, Stefan</creator><creator>Kleebe, Hans-Joachim</creator><creator>Mera, Gabriela</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7489-2983</orcidid><orcidid>https://orcid.org/0000-0002-9325-8769</orcidid></search><sort><creationdate>20210722</creationdate><title>Structure and Thermodynamics of Silicon Oxycarbide Polymer-Derived Ceramics with and without Mixed-Bonding</title><author>Sugie, Casey ; Navrotsky, Alexandra ; Lauterbach, Stefan ; Kleebe, Hans-Joachim ; Mera, Gabriela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-701f33d25f25925e74b4a92122c415254a494194e1fc7c34bb21e6f986bf94ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Ceramic bonding</topic><topic>Ceramics</topic><topic>Cristobalite</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Enthalpy</topic><topic>Heat of formation</topic><topic>Heat of solution</topic><topic>High temperature</topic><topic>Hydroxyl groups</topic><topic>Interfacial bonding</topic><topic>Molten salts</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Oxycarbides</topic><topic>Polymers</topic><topic>Precursors</topic><topic>Pyrolysis</topic><topic>Raman spectra</topic><topic>Silicon carbide</topic><topic>Silicon dioxide</topic><topic>Spectrum analysis</topic><topic>Tetrahedra</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugie, Casey</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Lauterbach, Stefan</creatorcontrib><creatorcontrib>Kleebe, Hans-Joachim</creatorcontrib><creatorcontrib>Mera, Gabriela</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugie, Casey</au><au>Navrotsky, Alexandra</au><au>Lauterbach, Stefan</au><au>Kleebe, Hans-Joachim</au><au>Mera, Gabriela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Thermodynamics of Silicon Oxycarbide Polymer-Derived Ceramics with and without Mixed-Bonding</atitle><jtitle>Materials</jtitle><date>2021-07-22</date><risdate>2021</risdate><volume>14</volume><issue>15</issue><spage>4075</spage><pages>4075-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Silicon oxycarbides synthesized through a conventional polymeric route show characteristic nanodomains that consist of sp2 hybridized carbon, tetrahedrally coordinated SiO4, and tetrahedrally coordinated silicon with carbon substitution for oxygen, called “mixed bonds.” Here we synthesize two preceramic polymers possessing both phenyl substituents as unique organic groups. In one precursor, the phenyl group is directly bonded to silicon, resulting in a SiOC polymer-derived ceramic (PDC) with mixed bonding. In the other precursor, the phenyl group is bonded to the silicon through Si-O-C bridges, which results in a SiOC PDC without mixed bonding. Radial breathing-like mode bands in the Raman spectra reveal that SiOC PDCs contain carbon nanoscrolls with spiral-like rolled-up geometry and open edges at the ends of their structure. Calorimetric measurements of the heat of dissolution in a molten salt solvent show that the SiOC PDCs with mixed bonding have negative enthalpies of formation with respect to crystalline components (silicon carbide, cristobalite, and graphite) and are more thermodynamically stable than those without. The heats of formation from crystalline SiO2, SiC, and C of SiOC PDCs without mixed bonding are close to zero and depend on the pyrolysis temperature. Solid state MAS NMR confirms the presence or absence of mixed bonding and further shows that, without mixed bonding, terminal hydroxyls are bound to some of the Si-O tetrahedra. This study indicates that mixed bonding, along with additional factors, such as the presence of terminal hydroxyl groups, contributes to the thermodynamic stability of SiOC PDCs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34361269</pmid><doi>10.3390/ma14154075</doi><orcidid>https://orcid.org/0000-0002-7489-2983</orcidid><orcidid>https://orcid.org/0000-0002-9325-8769</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-07, Vol.14 (15), p.4075 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8347565 |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central |
subjects | Carbon Ceramic bonding Ceramics Cristobalite Crystal structure Crystallinity Enthalpy Heat of formation Heat of solution High temperature Hydroxyl groups Interfacial bonding Molten salts NMR NMR spectroscopy Nuclear magnetic resonance Oxycarbides Polymers Precursors Pyrolysis Raman spectra Silicon carbide Silicon dioxide Spectrum analysis Tetrahedra Transmission electron microscopy |
title | Structure and Thermodynamics of Silicon Oxycarbide Polymer-Derived Ceramics with and without Mixed-Bonding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Thermodynamics%20of%20Silicon%20Oxycarbide%20Polymer-Derived%20Ceramics%20with%20and%20without%20Mixed-Bonding&rft.jtitle=Materials&rft.au=Sugie,%20Casey&rft.date=2021-07-22&rft.volume=14&rft.issue=15&rft.spage=4075&rft.pages=4075-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14154075&rft_dat=%3Cproquest_pubme%3E2558846634%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-701f33d25f25925e74b4a92122c415254a494194e1fc7c34bb21e6f986bf94ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2558846634&rft_id=info:pmid/34361269&rfr_iscdi=true |