Loading…
Comparison of EEG microstates with resting state fMRI and FDG‐PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data
Simultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs‐functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fracti...
Saved in:
Published in: | Human brain mapping 2021-09, Vol.42 (13), p.4122-4133 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5109-37c852e8cc5ab370ecf5bb02100232324f4b036819d35917397577055a4dbe63 |
---|---|
cites | cdi_FETCH-LOGICAL-c5109-37c852e8cc5ab370ecf5bb02100232324f4b036819d35917397577055a4dbe63 |
container_end_page | 4133 |
container_issue | 13 |
container_start_page | 4122 |
container_title | Human brain mapping |
container_volume | 42 |
creator | Rajkumar, Ravichandran Farrher, Ezequiel Mauler, Jörg Sripad, Praveen Régio Brambilla, Cláudia Rota Kops, Elena Scheins, Jürgen Dammers, Jürgen Lerche, Christoph Langen, Karl‐Josef Herzog, Hans Biswal, Bharat Shah, N. Jon Neuner, Irene |
description | Simultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs‐functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fractional amplitude of low‐frequency fluctuations (fALFFs), as well as 2‐[18F]fluoro‐2‐desoxy‐d‐glucose (FDG)‐PET standardised uptake value (SUV), were calculated and the measures were extracted from the default mode network (DMN) regions of the brain. Similarly, four microstates for each subject, showing the diverse functional states of the whole brain via topographical variations due to global field power (GFP), were estimated from artefact‐corrected EEG signals. In this exploratory analysis, the GFP of microstates was nonparametrically compared to rs‐fMRI metrics and FDG‐PET SUV measured in the DMN of the brain. The rs‐fMRI metrics (ReHO, fALFF) and FDG‐PET SUV did not show any significant correlations with any of the microstates. The DC metric showed a significant positive correlation with microstate C (rs = 0.73, p = .01). FDG‐PET SUVs indicate a trend for a negative correlation with microstates A, B and C. The positive correlation of microstate C with DC metrics suggests a functional relationship between cortical hubs in the frontal and occipital lobes. The results of this study suggest further exploration of this method in a larger sample and in patients with neuropsychiatric disorders. The aim of this exploratory pilot study is to lay the foundation for the development of such multimodal measures to be applied as biomarkers for diagnosis, disease staging, treatment response and monitoring of neuropsychiatric disorders. |
doi_str_mv | 10.1002/hbm.24429 |
format | article |
fullrecord | <record><control><sourceid>gale_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710624453</galeid><sourcerecordid>A710624453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5109-37c852e8cc5ab370ecf5bb02100232324f4b036819d35917397577055a4dbe63</originalsourceid><addsrcrecordid>eNp1ksFuEzEQhlcIREvhwAsgS1zaQxJ7vV7HF6QS0rRSI1CVu-Xd9SYuu3ZqexvlxiPwBrwbT8Jst0QUgXywNf78j_-ZSZK3BI8JxulkU7TjNMtS8Sw5JljwESaCPu_PORuJjJOj5FUItxgTwjB5mRxRTHPOU36c_Ji5dqu8Cc4iV6P5fIFaU3oXooo6oJ2JG-R1iMau0UMM1cubK6RshS4-LX5--_5lvkKtVqEDChmL4kajSteqayJqXaWR1XHn_Fd0bxQKpoW4stp1odmDcOl8pSsUvQFWNegU5CbLmwn84wxVKqrXyYtaNUG_edxPktXFfDW7HF1_XlzNzq9HJQPHI8rLKUv1tCyZKijHuqxZUeC0Lw-FldVZAZ6nRFSUCcKp4IxzzJjKqkLn9CT5MMhuu6LVValt9KqRW_iX8nvplJFPb6zZyLW7l1PKciEoCJw-Cnh310HBZGtCqZtmMCtTkuaC5DlPAX3_F3rrOm_BnUxZjjEnAtp3oNaq0dLY2kHesheV5xwaC_1mfdrxPyhYlYY2OqtrA_EnD86GB32Pg9f1wSPBsq-WhGGSD8ME7Ls_i3Igf08PAJMB2EGW_f-V5OXH5SD5C4uq0p4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560071919</pqid></control><display><type>article</type><title>Comparison of EEG microstates with resting state fMRI and FDG‐PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Rajkumar, Ravichandran ; Farrher, Ezequiel ; Mauler, Jörg ; Sripad, Praveen ; Régio Brambilla, Cláudia ; Rota Kops, Elena ; Scheins, Jürgen ; Dammers, Jürgen ; Lerche, Christoph ; Langen, Karl‐Josef ; Herzog, Hans ; Biswal, Bharat ; Shah, N. Jon ; Neuner, Irene</creator><creatorcontrib>Rajkumar, Ravichandran ; Farrher, Ezequiel ; Mauler, Jörg ; Sripad, Praveen ; Régio Brambilla, Cláudia ; Rota Kops, Elena ; Scheins, Jürgen ; Dammers, Jürgen ; Lerche, Christoph ; Langen, Karl‐Josef ; Herzog, Hans ; Biswal, Bharat ; Shah, N. Jon ; Neuner, Irene</creatorcontrib><description>Simultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs‐functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fractional amplitude of low‐frequency fluctuations (fALFFs), as well as 2‐[18F]fluoro‐2‐desoxy‐d‐glucose (FDG)‐PET standardised uptake value (SUV), were calculated and the measures were extracted from the default mode network (DMN) regions of the brain. Similarly, four microstates for each subject, showing the diverse functional states of the whole brain via topographical variations due to global field power (GFP), were estimated from artefact‐corrected EEG signals. In this exploratory analysis, the GFP of microstates was nonparametrically compared to rs‐fMRI metrics and FDG‐PET SUV measured in the DMN of the brain. The rs‐fMRI metrics (ReHO, fALFF) and FDG‐PET SUV did not show any significant correlations with any of the microstates. The DC metric showed a significant positive correlation with microstate C (rs = 0.73, p = .01). FDG‐PET SUVs indicate a trend for a negative correlation with microstates A, B and C. The positive correlation of microstate C with DC metrics suggests a functional relationship between cortical hubs in the frontal and occipital lobes. The results of this study suggest further exploration of this method in a larger sample and in patients with neuropsychiatric disorders. The aim of this exploratory pilot study is to lay the foundation for the development of such multimodal measures to be applied as biomarkers for diagnosis, disease staging, treatment response and monitoring of neuropsychiatric disorders.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.24429</identifier><identifier>PMID: 30367727</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>18F‐FDG ; Adult ; Biomarkers ; Brain ; Brain mapping ; Cerebral Cortex - diagnostic imaging ; Cerebral Cortex - physiology ; Connectome - methods ; Correlation ; Data acquisition ; Default Mode Network - diagnostic imaging ; Default Mode Network - physiology ; Disorders ; EEG ; Electroencephalography ; Electroencephalography - methods ; fMRI ; Functional magnetic resonance imaging ; Homogeneity ; Humans ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging equipment ; Mental disorders ; multimodal imaging ; Multimodal Imaging - methods ; Nervous system diseases ; Neuroimaging ; Occipital lobes ; PET imaging ; Positron emission ; Positron emission tomography ; Positron-Emission Tomography - methods ; Tomography</subject><ispartof>Human brain mapping, 2021-09, Vol.42 (13), p.4122-4133</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>COPYRIGHT 2018 John Wiley & Sons, Inc.</rights><rights>2021. This work is published under https://onlinelibrary.wiley.com/terms-and-conditions (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5109-37c852e8cc5ab370ecf5bb02100232324f4b036819d35917397577055a4dbe63</citedby><cites>FETCH-LOGICAL-c5109-37c852e8cc5ab370ecf5bb02100232324f4b036819d35917397577055a4dbe63</cites><orcidid>0000-0001-5875-5316 ; 0000-0003-1526-6592 ; 0000-0003-4937-0355 ; 0000-0001-6361-2571 ; 0000-0003-1101-5075 ; 0000-0002-8151-6169 ; 0000-0002-0959-9457 ; 0000-0002-5164-8873 ; 0000-0003-2749-2108 ; 0000-0003-2902-8667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2560071919/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2560071919?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24429$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30367727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajkumar, Ravichandran</creatorcontrib><creatorcontrib>Farrher, Ezequiel</creatorcontrib><creatorcontrib>Mauler, Jörg</creatorcontrib><creatorcontrib>Sripad, Praveen</creatorcontrib><creatorcontrib>Régio Brambilla, Cláudia</creatorcontrib><creatorcontrib>Rota Kops, Elena</creatorcontrib><creatorcontrib>Scheins, Jürgen</creatorcontrib><creatorcontrib>Dammers, Jürgen</creatorcontrib><creatorcontrib>Lerche, Christoph</creatorcontrib><creatorcontrib>Langen, Karl‐Josef</creatorcontrib><creatorcontrib>Herzog, Hans</creatorcontrib><creatorcontrib>Biswal, Bharat</creatorcontrib><creatorcontrib>Shah, N. Jon</creatorcontrib><creatorcontrib>Neuner, Irene</creatorcontrib><title>Comparison of EEG microstates with resting state fMRI and FDG‐PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Simultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs‐functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fractional amplitude of low‐frequency fluctuations (fALFFs), as well as 2‐[18F]fluoro‐2‐desoxy‐d‐glucose (FDG)‐PET standardised uptake value (SUV), were calculated and the measures were extracted from the default mode network (DMN) regions of the brain. Similarly, four microstates for each subject, showing the diverse functional states of the whole brain via topographical variations due to global field power (GFP), were estimated from artefact‐corrected EEG signals. In this exploratory analysis, the GFP of microstates was nonparametrically compared to rs‐fMRI metrics and FDG‐PET SUV measured in the DMN of the brain. The rs‐fMRI metrics (ReHO, fALFF) and FDG‐PET SUV did not show any significant correlations with any of the microstates. The DC metric showed a significant positive correlation with microstate C (rs = 0.73, p = .01). FDG‐PET SUVs indicate a trend for a negative correlation with microstates A, B and C. The positive correlation of microstate C with DC metrics suggests a functional relationship between cortical hubs in the frontal and occipital lobes. The results of this study suggest further exploration of this method in a larger sample and in patients with neuropsychiatric disorders. The aim of this exploratory pilot study is to lay the foundation for the development of such multimodal measures to be applied as biomarkers for diagnosis, disease staging, treatment response and monitoring of neuropsychiatric disorders.</description><subject>18F‐FDG</subject><subject>Adult</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain mapping</subject><subject>Cerebral Cortex - diagnostic imaging</subject><subject>Cerebral Cortex - physiology</subject><subject>Connectome - methods</subject><subject>Correlation</subject><subject>Data acquisition</subject><subject>Default Mode Network - diagnostic imaging</subject><subject>Default Mode Network - physiology</subject><subject>Disorders</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>fMRI</subject><subject>Functional magnetic resonance imaging</subject><subject>Homogeneity</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging equipment</subject><subject>Mental disorders</subject><subject>multimodal imaging</subject><subject>Multimodal Imaging - methods</subject><subject>Nervous system diseases</subject><subject>Neuroimaging</subject><subject>Occipital lobes</subject><subject>PET imaging</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Tomography</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1ksFuEzEQhlcIREvhwAsgS1zaQxJ7vV7HF6QS0rRSI1CVu-Xd9SYuu3ZqexvlxiPwBrwbT8Jst0QUgXywNf78j_-ZSZK3BI8JxulkU7TjNMtS8Sw5JljwESaCPu_PORuJjJOj5FUItxgTwjB5mRxRTHPOU36c_Ji5dqu8Cc4iV6P5fIFaU3oXooo6oJ2JG-R1iMau0UMM1cubK6RshS4-LX5--_5lvkKtVqEDChmL4kajSteqayJqXaWR1XHn_Fd0bxQKpoW4stp1odmDcOl8pSsUvQFWNegU5CbLmwn84wxVKqrXyYtaNUG_edxPktXFfDW7HF1_XlzNzq9HJQPHI8rLKUv1tCyZKijHuqxZUeC0Lw-FldVZAZ6nRFSUCcKp4IxzzJjKqkLn9CT5MMhuu6LVValt9KqRW_iX8nvplJFPb6zZyLW7l1PKciEoCJw-Cnh310HBZGtCqZtmMCtTkuaC5DlPAX3_F3rrOm_BnUxZjjEnAtp3oNaq0dLY2kHesheV5xwaC_1mfdrxPyhYlYY2OqtrA_EnD86GB32Pg9f1wSPBsq-WhGGSD8ME7Ls_i3Igf08PAJMB2EGW_f-V5OXH5SD5C4uq0p4</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Rajkumar, Ravichandran</creator><creator>Farrher, Ezequiel</creator><creator>Mauler, Jörg</creator><creator>Sripad, Praveen</creator><creator>Régio Brambilla, Cláudia</creator><creator>Rota Kops, Elena</creator><creator>Scheins, Jürgen</creator><creator>Dammers, Jürgen</creator><creator>Lerche, Christoph</creator><creator>Langen, Karl‐Josef</creator><creator>Herzog, Hans</creator><creator>Biswal, Bharat</creator><creator>Shah, N. Jon</creator><creator>Neuner, Irene</creator><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5875-5316</orcidid><orcidid>https://orcid.org/0000-0003-1526-6592</orcidid><orcidid>https://orcid.org/0000-0003-4937-0355</orcidid><orcidid>https://orcid.org/0000-0001-6361-2571</orcidid><orcidid>https://orcid.org/0000-0003-1101-5075</orcidid><orcidid>https://orcid.org/0000-0002-8151-6169</orcidid><orcidid>https://orcid.org/0000-0002-0959-9457</orcidid><orcidid>https://orcid.org/0000-0002-5164-8873</orcidid><orcidid>https://orcid.org/0000-0003-2749-2108</orcidid><orcidid>https://orcid.org/0000-0003-2902-8667</orcidid></search><sort><creationdate>202109</creationdate><title>Comparison of EEG microstates with resting state fMRI and FDG‐PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data</title><author>Rajkumar, Ravichandran ; Farrher, Ezequiel ; Mauler, Jörg ; Sripad, Praveen ; Régio Brambilla, Cláudia ; Rota Kops, Elena ; Scheins, Jürgen ; Dammers, Jürgen ; Lerche, Christoph ; Langen, Karl‐Josef ; Herzog, Hans ; Biswal, Bharat ; Shah, N. Jon ; Neuner, Irene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5109-37c852e8cc5ab370ecf5bb02100232324f4b036819d35917397577055a4dbe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>18F‐FDG</topic><topic>Adult</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain mapping</topic><topic>Cerebral Cortex - diagnostic imaging</topic><topic>Cerebral Cortex - physiology</topic><topic>Connectome - methods</topic><topic>Correlation</topic><topic>Data acquisition</topic><topic>Default Mode Network - diagnostic imaging</topic><topic>Default Mode Network - physiology</topic><topic>Disorders</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>fMRI</topic><topic>Functional magnetic resonance imaging</topic><topic>Homogeneity</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging equipment</topic><topic>Mental disorders</topic><topic>multimodal imaging</topic><topic>Multimodal Imaging - methods</topic><topic>Nervous system diseases</topic><topic>Neuroimaging</topic><topic>Occipital lobes</topic><topic>PET imaging</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajkumar, Ravichandran</creatorcontrib><creatorcontrib>Farrher, Ezequiel</creatorcontrib><creatorcontrib>Mauler, Jörg</creatorcontrib><creatorcontrib>Sripad, Praveen</creatorcontrib><creatorcontrib>Régio Brambilla, Cláudia</creatorcontrib><creatorcontrib>Rota Kops, Elena</creatorcontrib><creatorcontrib>Scheins, Jürgen</creatorcontrib><creatorcontrib>Dammers, Jürgen</creatorcontrib><creatorcontrib>Lerche, Christoph</creatorcontrib><creatorcontrib>Langen, Karl‐Josef</creatorcontrib><creatorcontrib>Herzog, Hans</creatorcontrib><creatorcontrib>Biswal, Bharat</creatorcontrib><creatorcontrib>Shah, N. Jon</creatorcontrib><creatorcontrib>Neuner, Irene</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rajkumar, Ravichandran</au><au>Farrher, Ezequiel</au><au>Mauler, Jörg</au><au>Sripad, Praveen</au><au>Régio Brambilla, Cláudia</au><au>Rota Kops, Elena</au><au>Scheins, Jürgen</au><au>Dammers, Jürgen</au><au>Lerche, Christoph</au><au>Langen, Karl‐Josef</au><au>Herzog, Hans</au><au>Biswal, Bharat</au><au>Shah, N. Jon</au><au>Neuner, Irene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of EEG microstates with resting state fMRI and FDG‐PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2021-09</date><risdate>2021</risdate><volume>42</volume><issue>13</issue><spage>4122</spage><epage>4133</epage><pages>4122-4133</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Simultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs‐functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fractional amplitude of low‐frequency fluctuations (fALFFs), as well as 2‐[18F]fluoro‐2‐desoxy‐d‐glucose (FDG)‐PET standardised uptake value (SUV), were calculated and the measures were extracted from the default mode network (DMN) regions of the brain. Similarly, four microstates for each subject, showing the diverse functional states of the whole brain via topographical variations due to global field power (GFP), were estimated from artefact‐corrected EEG signals. In this exploratory analysis, the GFP of microstates was nonparametrically compared to rs‐fMRI metrics and FDG‐PET SUV measured in the DMN of the brain. The rs‐fMRI metrics (ReHO, fALFF) and FDG‐PET SUV did not show any significant correlations with any of the microstates. The DC metric showed a significant positive correlation with microstate C (rs = 0.73, p = .01). FDG‐PET SUVs indicate a trend for a negative correlation with microstates A, B and C. The positive correlation of microstate C with DC metrics suggests a functional relationship between cortical hubs in the frontal and occipital lobes. The results of this study suggest further exploration of this method in a larger sample and in patients with neuropsychiatric disorders. The aim of this exploratory pilot study is to lay the foundation for the development of such multimodal measures to be applied as biomarkers for diagnosis, disease staging, treatment response and monitoring of neuropsychiatric disorders.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30367727</pmid><doi>10.1002/hbm.24429</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5875-5316</orcidid><orcidid>https://orcid.org/0000-0003-1526-6592</orcidid><orcidid>https://orcid.org/0000-0003-4937-0355</orcidid><orcidid>https://orcid.org/0000-0001-6361-2571</orcidid><orcidid>https://orcid.org/0000-0003-1101-5075</orcidid><orcidid>https://orcid.org/0000-0002-8151-6169</orcidid><orcidid>https://orcid.org/0000-0002-0959-9457</orcidid><orcidid>https://orcid.org/0000-0002-5164-8873</orcidid><orcidid>https://orcid.org/0000-0003-2749-2108</orcidid><orcidid>https://orcid.org/0000-0003-2902-8667</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2021-09, Vol.42 (13), p.4122-4133 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356993 |
source | Open Access: Wiley-Blackwell Open Access Journals |
subjects | 18F‐FDG Adult Biomarkers Brain Brain mapping Cerebral Cortex - diagnostic imaging Cerebral Cortex - physiology Connectome - methods Correlation Data acquisition Default Mode Network - diagnostic imaging Default Mode Network - physiology Disorders EEG Electroencephalography Electroencephalography - methods fMRI Functional magnetic resonance imaging Homogeneity Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging equipment Mental disorders multimodal imaging Multimodal Imaging - methods Nervous system diseases Neuroimaging Occipital lobes PET imaging Positron emission Positron emission tomography Positron-Emission Tomography - methods Tomography |
title | Comparison of EEG microstates with resting state fMRI and FDG‐PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20EEG%20microstates%20with%20resting%20state%20fMRI%20and%20FDG%E2%80%90PET%20measures%20in%20the%20default%20mode%20network%20via%20simultaneously%20recorded%20trimodal%20(PET/MR/EEG)%20data&rft.jtitle=Human%20brain%20mapping&rft.au=Rajkumar,%20Ravichandran&rft.date=2021-09&rft.volume=42&rft.issue=13&rft.spage=4122&rft.epage=4133&rft.pages=4122-4133&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.24429&rft_dat=%3Cgale_24P%3EA710624453%3C/gale_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5109-37c852e8cc5ab370ecf5bb02100232324f4b036819d35917397577055a4dbe63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560071919&rft_id=info:pmid/30367727&rft_galeid=A710624453&rfr_iscdi=true |