Loading…

Comparison of EEG microstates with resting state fMRI and FDG‐PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data

Simultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs‐functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fracti...

Full description

Saved in:
Bibliographic Details
Published in:Human brain mapping 2021-09, Vol.42 (13), p.4122-4133
Main Authors: Rajkumar, Ravichandran, Farrher, Ezequiel, Mauler, Jörg, Sripad, Praveen, Régio Brambilla, Cláudia, Rota Kops, Elena, Scheins, Jürgen, Dammers, Jürgen, Lerche, Christoph, Langen, Karl‐Josef, Herzog, Hans, Biswal, Bharat, Shah, N. Jon, Neuner, Irene
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5109-37c852e8cc5ab370ecf5bb02100232324f4b036819d35917397577055a4dbe63
cites cdi_FETCH-LOGICAL-c5109-37c852e8cc5ab370ecf5bb02100232324f4b036819d35917397577055a4dbe63
container_end_page 4133
container_issue 13
container_start_page 4122
container_title Human brain mapping
container_volume 42
creator Rajkumar, Ravichandran
Farrher, Ezequiel
Mauler, Jörg
Sripad, Praveen
Régio Brambilla, Cláudia
Rota Kops, Elena
Scheins, Jürgen
Dammers, Jürgen
Lerche, Christoph
Langen, Karl‐Josef
Herzog, Hans
Biswal, Bharat
Shah, N. Jon
Neuner, Irene
description Simultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs‐functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fractional amplitude of low‐frequency fluctuations (fALFFs), as well as 2‐[18F]fluoro‐2‐desoxy‐d‐glucose (FDG)‐PET standardised uptake value (SUV), were calculated and the measures were extracted from the default mode network (DMN) regions of the brain. Similarly, four microstates for each subject, showing the diverse functional states of the whole brain via topographical variations due to global field power (GFP), were estimated from artefact‐corrected EEG signals. In this exploratory analysis, the GFP of microstates was nonparametrically compared to rs‐fMRI metrics and FDG‐PET SUV measured in the DMN of the brain. The rs‐fMRI metrics (ReHO, fALFF) and FDG‐PET SUV did not show any significant correlations with any of the microstates. The DC metric showed a significant positive correlation with microstate C (rs = 0.73, p = .01). FDG‐PET SUVs indicate a trend for a negative correlation with microstates A, B and C. The positive correlation of microstate C with DC metrics suggests a functional relationship between cortical hubs in the frontal and occipital lobes. The results of this study suggest further exploration of this method in a larger sample and in patients with neuropsychiatric disorders. The aim of this exploratory pilot study is to lay the foundation for the development of such multimodal measures to be applied as biomarkers for diagnosis, disease staging, treatment response and monitoring of neuropsychiatric disorders.
doi_str_mv 10.1002/hbm.24429
format article
fullrecord <record><control><sourceid>gale_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710624453</galeid><sourcerecordid>A710624453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5109-37c852e8cc5ab370ecf5bb02100232324f4b036819d35917397577055a4dbe63</originalsourceid><addsrcrecordid>eNp1ksFuEzEQhlcIREvhwAsgS1zaQxJ7vV7HF6QS0rRSI1CVu-Xd9SYuu3ZqexvlxiPwBrwbT8Jst0QUgXywNf78j_-ZSZK3BI8JxulkU7TjNMtS8Sw5JljwESaCPu_PORuJjJOj5FUItxgTwjB5mRxRTHPOU36c_Ji5dqu8Cc4iV6P5fIFaU3oXooo6oJ2JG-R1iMau0UMM1cubK6RshS4-LX5--_5lvkKtVqEDChmL4kajSteqayJqXaWR1XHn_Fd0bxQKpoW4stp1odmDcOl8pSsUvQFWNegU5CbLmwn84wxVKqrXyYtaNUG_edxPktXFfDW7HF1_XlzNzq9HJQPHI8rLKUv1tCyZKijHuqxZUeC0Lw-FldVZAZ6nRFSUCcKp4IxzzJjKqkLn9CT5MMhuu6LVValt9KqRW_iX8nvplJFPb6zZyLW7l1PKciEoCJw-Cnh310HBZGtCqZtmMCtTkuaC5DlPAX3_F3rrOm_BnUxZjjEnAtp3oNaq0dLY2kHesheV5xwaC_1mfdrxPyhYlYY2OqtrA_EnD86GB32Pg9f1wSPBsq-WhGGSD8ME7Ls_i3Igf08PAJMB2EGW_f-V5OXH5SD5C4uq0p4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560071919</pqid></control><display><type>article</type><title>Comparison of EEG microstates with resting state fMRI and FDG‐PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Rajkumar, Ravichandran ; Farrher, Ezequiel ; Mauler, Jörg ; Sripad, Praveen ; Régio Brambilla, Cláudia ; Rota Kops, Elena ; Scheins, Jürgen ; Dammers, Jürgen ; Lerche, Christoph ; Langen, Karl‐Josef ; Herzog, Hans ; Biswal, Bharat ; Shah, N. Jon ; Neuner, Irene</creator><creatorcontrib>Rajkumar, Ravichandran ; Farrher, Ezequiel ; Mauler, Jörg ; Sripad, Praveen ; Régio Brambilla, Cláudia ; Rota Kops, Elena ; Scheins, Jürgen ; Dammers, Jürgen ; Lerche, Christoph ; Langen, Karl‐Josef ; Herzog, Hans ; Biswal, Bharat ; Shah, N. Jon ; Neuner, Irene</creatorcontrib><description>Simultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs‐functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fractional amplitude of low‐frequency fluctuations (fALFFs), as well as 2‐[18F]fluoro‐2‐desoxy‐d‐glucose (FDG)‐PET standardised uptake value (SUV), were calculated and the measures were extracted from the default mode network (DMN) regions of the brain. Similarly, four microstates for each subject, showing the diverse functional states of the whole brain via topographical variations due to global field power (GFP), were estimated from artefact‐corrected EEG signals. In this exploratory analysis, the GFP of microstates was nonparametrically compared to rs‐fMRI metrics and FDG‐PET SUV measured in the DMN of the brain. The rs‐fMRI metrics (ReHO, fALFF) and FDG‐PET SUV did not show any significant correlations with any of the microstates. The DC metric showed a significant positive correlation with microstate C (rs = 0.73, p = .01). FDG‐PET SUVs indicate a trend for a negative correlation with microstates A, B and C. The positive correlation of microstate C with DC metrics suggests a functional relationship between cortical hubs in the frontal and occipital lobes. The results of this study suggest further exploration of this method in a larger sample and in patients with neuropsychiatric disorders. The aim of this exploratory pilot study is to lay the foundation for the development of such multimodal measures to be applied as biomarkers for diagnosis, disease staging, treatment response and monitoring of neuropsychiatric disorders.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.24429</identifier><identifier>PMID: 30367727</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>18F‐FDG ; Adult ; Biomarkers ; Brain ; Brain mapping ; Cerebral Cortex - diagnostic imaging ; Cerebral Cortex - physiology ; Connectome - methods ; Correlation ; Data acquisition ; Default Mode Network - diagnostic imaging ; Default Mode Network - physiology ; Disorders ; EEG ; Electroencephalography ; Electroencephalography - methods ; fMRI ; Functional magnetic resonance imaging ; Homogeneity ; Humans ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging equipment ; Mental disorders ; multimodal imaging ; Multimodal Imaging - methods ; Nervous system diseases ; Neuroimaging ; Occipital lobes ; PET imaging ; Positron emission ; Positron emission tomography ; Positron-Emission Tomography - methods ; Tomography</subject><ispartof>Human brain mapping, 2021-09, Vol.42 (13), p.4122-4133</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>COPYRIGHT 2018 John Wiley &amp; Sons, Inc.</rights><rights>2021. This work is published under https://onlinelibrary.wiley.com/terms-and-conditions (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5109-37c852e8cc5ab370ecf5bb02100232324f4b036819d35917397577055a4dbe63</citedby><cites>FETCH-LOGICAL-c5109-37c852e8cc5ab370ecf5bb02100232324f4b036819d35917397577055a4dbe63</cites><orcidid>0000-0001-5875-5316 ; 0000-0003-1526-6592 ; 0000-0003-4937-0355 ; 0000-0001-6361-2571 ; 0000-0003-1101-5075 ; 0000-0002-8151-6169 ; 0000-0002-0959-9457 ; 0000-0002-5164-8873 ; 0000-0003-2749-2108 ; 0000-0003-2902-8667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2560071919/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2560071919?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24429$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30367727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajkumar, Ravichandran</creatorcontrib><creatorcontrib>Farrher, Ezequiel</creatorcontrib><creatorcontrib>Mauler, Jörg</creatorcontrib><creatorcontrib>Sripad, Praveen</creatorcontrib><creatorcontrib>Régio Brambilla, Cláudia</creatorcontrib><creatorcontrib>Rota Kops, Elena</creatorcontrib><creatorcontrib>Scheins, Jürgen</creatorcontrib><creatorcontrib>Dammers, Jürgen</creatorcontrib><creatorcontrib>Lerche, Christoph</creatorcontrib><creatorcontrib>Langen, Karl‐Josef</creatorcontrib><creatorcontrib>Herzog, Hans</creatorcontrib><creatorcontrib>Biswal, Bharat</creatorcontrib><creatorcontrib>Shah, N. Jon</creatorcontrib><creatorcontrib>Neuner, Irene</creatorcontrib><title>Comparison of EEG microstates with resting state fMRI and FDG‐PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Simultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs‐functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fractional amplitude of low‐frequency fluctuations (fALFFs), as well as 2‐[18F]fluoro‐2‐desoxy‐d‐glucose (FDG)‐PET standardised uptake value (SUV), were calculated and the measures were extracted from the default mode network (DMN) regions of the brain. Similarly, four microstates for each subject, showing the diverse functional states of the whole brain via topographical variations due to global field power (GFP), were estimated from artefact‐corrected EEG signals. In this exploratory analysis, the GFP of microstates was nonparametrically compared to rs‐fMRI metrics and FDG‐PET SUV measured in the DMN of the brain. The rs‐fMRI metrics (ReHO, fALFF) and FDG‐PET SUV did not show any significant correlations with any of the microstates. The DC metric showed a significant positive correlation with microstate C (rs = 0.73, p = .01). FDG‐PET SUVs indicate a trend for a negative correlation with microstates A, B and C. The positive correlation of microstate C with DC metrics suggests a functional relationship between cortical hubs in the frontal and occipital lobes. The results of this study suggest further exploration of this method in a larger sample and in patients with neuropsychiatric disorders. The aim of this exploratory pilot study is to lay the foundation for the development of such multimodal measures to be applied as biomarkers for diagnosis, disease staging, treatment response and monitoring of neuropsychiatric disorders.</description><subject>18F‐FDG</subject><subject>Adult</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain mapping</subject><subject>Cerebral Cortex - diagnostic imaging</subject><subject>Cerebral Cortex - physiology</subject><subject>Connectome - methods</subject><subject>Correlation</subject><subject>Data acquisition</subject><subject>Default Mode Network - diagnostic imaging</subject><subject>Default Mode Network - physiology</subject><subject>Disorders</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>fMRI</subject><subject>Functional magnetic resonance imaging</subject><subject>Homogeneity</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging equipment</subject><subject>Mental disorders</subject><subject>multimodal imaging</subject><subject>Multimodal Imaging - methods</subject><subject>Nervous system diseases</subject><subject>Neuroimaging</subject><subject>Occipital lobes</subject><subject>PET imaging</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Tomography</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1ksFuEzEQhlcIREvhwAsgS1zaQxJ7vV7HF6QS0rRSI1CVu-Xd9SYuu3ZqexvlxiPwBrwbT8Jst0QUgXywNf78j_-ZSZK3BI8JxulkU7TjNMtS8Sw5JljwESaCPu_PORuJjJOj5FUItxgTwjB5mRxRTHPOU36c_Ji5dqu8Cc4iV6P5fIFaU3oXooo6oJ2JG-R1iMau0UMM1cubK6RshS4-LX5--_5lvkKtVqEDChmL4kajSteqayJqXaWR1XHn_Fd0bxQKpoW4stp1odmDcOl8pSsUvQFWNegU5CbLmwn84wxVKqrXyYtaNUG_edxPktXFfDW7HF1_XlzNzq9HJQPHI8rLKUv1tCyZKijHuqxZUeC0Lw-FldVZAZ6nRFSUCcKp4IxzzJjKqkLn9CT5MMhuu6LVValt9KqRW_iX8nvplJFPb6zZyLW7l1PKciEoCJw-Cnh310HBZGtCqZtmMCtTkuaC5DlPAX3_F3rrOm_BnUxZjjEnAtp3oNaq0dLY2kHesheV5xwaC_1mfdrxPyhYlYY2OqtrA_EnD86GB32Pg9f1wSPBsq-WhGGSD8ME7Ls_i3Igf08PAJMB2EGW_f-V5OXH5SD5C4uq0p4</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Rajkumar, Ravichandran</creator><creator>Farrher, Ezequiel</creator><creator>Mauler, Jörg</creator><creator>Sripad, Praveen</creator><creator>Régio Brambilla, Cláudia</creator><creator>Rota Kops, Elena</creator><creator>Scheins, Jürgen</creator><creator>Dammers, Jürgen</creator><creator>Lerche, Christoph</creator><creator>Langen, Karl‐Josef</creator><creator>Herzog, Hans</creator><creator>Biswal, Bharat</creator><creator>Shah, N. Jon</creator><creator>Neuner, Irene</creator><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5875-5316</orcidid><orcidid>https://orcid.org/0000-0003-1526-6592</orcidid><orcidid>https://orcid.org/0000-0003-4937-0355</orcidid><orcidid>https://orcid.org/0000-0001-6361-2571</orcidid><orcidid>https://orcid.org/0000-0003-1101-5075</orcidid><orcidid>https://orcid.org/0000-0002-8151-6169</orcidid><orcidid>https://orcid.org/0000-0002-0959-9457</orcidid><orcidid>https://orcid.org/0000-0002-5164-8873</orcidid><orcidid>https://orcid.org/0000-0003-2749-2108</orcidid><orcidid>https://orcid.org/0000-0003-2902-8667</orcidid></search><sort><creationdate>202109</creationdate><title>Comparison of EEG microstates with resting state fMRI and FDG‐PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data</title><author>Rajkumar, Ravichandran ; Farrher, Ezequiel ; Mauler, Jörg ; Sripad, Praveen ; Régio Brambilla, Cláudia ; Rota Kops, Elena ; Scheins, Jürgen ; Dammers, Jürgen ; Lerche, Christoph ; Langen, Karl‐Josef ; Herzog, Hans ; Biswal, Bharat ; Shah, N. Jon ; Neuner, Irene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5109-37c852e8cc5ab370ecf5bb02100232324f4b036819d35917397577055a4dbe63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>18F‐FDG</topic><topic>Adult</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain mapping</topic><topic>Cerebral Cortex - diagnostic imaging</topic><topic>Cerebral Cortex - physiology</topic><topic>Connectome - methods</topic><topic>Correlation</topic><topic>Data acquisition</topic><topic>Default Mode Network - diagnostic imaging</topic><topic>Default Mode Network - physiology</topic><topic>Disorders</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>fMRI</topic><topic>Functional magnetic resonance imaging</topic><topic>Homogeneity</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging equipment</topic><topic>Mental disorders</topic><topic>multimodal imaging</topic><topic>Multimodal Imaging - methods</topic><topic>Nervous system diseases</topic><topic>Neuroimaging</topic><topic>Occipital lobes</topic><topic>PET imaging</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajkumar, Ravichandran</creatorcontrib><creatorcontrib>Farrher, Ezequiel</creatorcontrib><creatorcontrib>Mauler, Jörg</creatorcontrib><creatorcontrib>Sripad, Praveen</creatorcontrib><creatorcontrib>Régio Brambilla, Cláudia</creatorcontrib><creatorcontrib>Rota Kops, Elena</creatorcontrib><creatorcontrib>Scheins, Jürgen</creatorcontrib><creatorcontrib>Dammers, Jürgen</creatorcontrib><creatorcontrib>Lerche, Christoph</creatorcontrib><creatorcontrib>Langen, Karl‐Josef</creatorcontrib><creatorcontrib>Herzog, Hans</creatorcontrib><creatorcontrib>Biswal, Bharat</creatorcontrib><creatorcontrib>Shah, N. Jon</creatorcontrib><creatorcontrib>Neuner, Irene</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rajkumar, Ravichandran</au><au>Farrher, Ezequiel</au><au>Mauler, Jörg</au><au>Sripad, Praveen</au><au>Régio Brambilla, Cláudia</au><au>Rota Kops, Elena</au><au>Scheins, Jürgen</au><au>Dammers, Jürgen</au><au>Lerche, Christoph</au><au>Langen, Karl‐Josef</au><au>Herzog, Hans</au><au>Biswal, Bharat</au><au>Shah, N. Jon</au><au>Neuner, Irene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of EEG microstates with resting state fMRI and FDG‐PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2021-09</date><risdate>2021</risdate><volume>42</volume><issue>13</issue><spage>4122</spage><epage>4133</epage><pages>4122-4133</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Simultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs‐functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fractional amplitude of low‐frequency fluctuations (fALFFs), as well as 2‐[18F]fluoro‐2‐desoxy‐d‐glucose (FDG)‐PET standardised uptake value (SUV), were calculated and the measures were extracted from the default mode network (DMN) regions of the brain. Similarly, four microstates for each subject, showing the diverse functional states of the whole brain via topographical variations due to global field power (GFP), were estimated from artefact‐corrected EEG signals. In this exploratory analysis, the GFP of microstates was nonparametrically compared to rs‐fMRI metrics and FDG‐PET SUV measured in the DMN of the brain. The rs‐fMRI metrics (ReHO, fALFF) and FDG‐PET SUV did not show any significant correlations with any of the microstates. The DC metric showed a significant positive correlation with microstate C (rs = 0.73, p = .01). FDG‐PET SUVs indicate a trend for a negative correlation with microstates A, B and C. The positive correlation of microstate C with DC metrics suggests a functional relationship between cortical hubs in the frontal and occipital lobes. The results of this study suggest further exploration of this method in a larger sample and in patients with neuropsychiatric disorders. The aim of this exploratory pilot study is to lay the foundation for the development of such multimodal measures to be applied as biomarkers for diagnosis, disease staging, treatment response and monitoring of neuropsychiatric disorders.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30367727</pmid><doi>10.1002/hbm.24429</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5875-5316</orcidid><orcidid>https://orcid.org/0000-0003-1526-6592</orcidid><orcidid>https://orcid.org/0000-0003-4937-0355</orcidid><orcidid>https://orcid.org/0000-0001-6361-2571</orcidid><orcidid>https://orcid.org/0000-0003-1101-5075</orcidid><orcidid>https://orcid.org/0000-0002-8151-6169</orcidid><orcidid>https://orcid.org/0000-0002-0959-9457</orcidid><orcidid>https://orcid.org/0000-0002-5164-8873</orcidid><orcidid>https://orcid.org/0000-0003-2749-2108</orcidid><orcidid>https://orcid.org/0000-0003-2902-8667</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2021-09, Vol.42 (13), p.4122-4133
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356993
source Open Access: Wiley-Blackwell Open Access Journals
subjects 18F‐FDG
Adult
Biomarkers
Brain
Brain mapping
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - physiology
Connectome - methods
Correlation
Data acquisition
Default Mode Network - diagnostic imaging
Default Mode Network - physiology
Disorders
EEG
Electroencephalography
Electroencephalography - methods
fMRI
Functional magnetic resonance imaging
Homogeneity
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging equipment
Mental disorders
multimodal imaging
Multimodal Imaging - methods
Nervous system diseases
Neuroimaging
Occipital lobes
PET imaging
Positron emission
Positron emission tomography
Positron-Emission Tomography - methods
Tomography
title Comparison of EEG microstates with resting state fMRI and FDG‐PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20EEG%20microstates%20with%20resting%20state%20fMRI%20and%20FDG%E2%80%90PET%20measures%20in%20the%20default%20mode%20network%20via%20simultaneously%20recorded%20trimodal%20(PET/MR/EEG)%20data&rft.jtitle=Human%20brain%20mapping&rft.au=Rajkumar,%20Ravichandran&rft.date=2021-09&rft.volume=42&rft.issue=13&rft.spage=4122&rft.epage=4133&rft.pages=4122-4133&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.24429&rft_dat=%3Cgale_24P%3EA710624453%3C/gale_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5109-37c852e8cc5ab370ecf5bb02100232324f4b036819d35917397577055a4dbe63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560071919&rft_id=info:pmid/30367727&rft_galeid=A710624453&rfr_iscdi=true