Loading…

Length variation in short tandem repeats affects gene expression in natural populations of Arabidopsis thaliana

The genetic basis for the fine-tuned regulation of gene expression is complex and ultimately influences the phenotype and thus the local adaptation of natural populations. Short tandem repeats (STRs) consisting of repetitive DNA motifs have been shown to regulate gene expression. STRs are variable i...

Full description

Saved in:
Bibliographic Details
Published in:The Plant cell 2021-08, Vol.33 (7), p.2221-2234
Main Authors: Reinar, William B, Lalun, Vilde O, Reitan, Trond, Jakobsen, Kjetill S, Butenko, Melinka A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The genetic basis for the fine-tuned regulation of gene expression is complex and ultimately influences the phenotype and thus the local adaptation of natural populations. Short tandem repeats (STRs) consisting of repetitive DNA motifs have been shown to regulate gene expression. STRs are variable in length within a population and serve as a heritable, but semi-reversible, reservoir of standing genetic variation. For sessile organisms, such as plants, STRs could be of major importance in fine-tuning gene expression as a response to a shifting local environment. Here, we used a transcriptome dataset from natural accessions of Arabidopsis thaliana to investigate population-wide gene expression patterns in light of genome-wide STR variation. We empirically modeled gene expression as a response to the STR length within and around the gene and demonstrated that an association between gene expression and STR length variation is unequivocally present in the sampled population. To support our model, we explored the promoter activity in a transcriptional regulator involved in root hair formation and provided experimentally determined causality between coding sequence length variation and promoter activity. Our results support a general link between gene expression variation and STR length variation in A. thaliana.
ISSN:1040-4651
1532-298X
DOI:10.1093/plcell/koab107