Loading…
Serum from Acute-on-chronic Liver Failure Patients May Affect Mesenchymal Stem Cells Transplantation by Impairing the Immunosuppressive Function of Cells
The safety and efficacy of mesenchymal stem cells (MSCs) in the treatment of acute-on-chronic liver failure (ACLF) have been validated. However, the impact of the pathological ACLF microenvironment on MSCs is less well understood. This study was designed to explore the changes in the functional prop...
Saved in:
Published in: | Journal of clinical and translational hepatology 2021-08, Vol.9 (4), p.503-513 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The safety and efficacy of mesenchymal stem cells (MSCs) in the treatment of acute-on-chronic liver failure (ACLF) have been validated. However, the impact of the pathological ACLF microenvironment on MSCs is less well understood. This study was designed to explore the changes in the functional properties of MSCs exposed to ACLF serum.
MSCs were cultured in the presence of 10%, 30% and 50% serum concentrations from ACLF patients and healthy volunteers. Then, the cell morphology, phenotype, apoptosis and proliferation of MSCs were evaluated, including the immunosuppressive effects. Subsequently, mRNA sequencing analysis was used to identify the molecules and pathways involved in MSC functional changes in the context of ACLF.
In the presence of ACLF serum, MSC morphology significantly changed but phenotype did not. Besides, MSC proliferation activity was weakened, while the apoptosis rate was lightly increased. Most importantly, the immunosuppressive function of MSCs was enhanced in a low-concentration serum environment but transformed into a proinflammatory response in a high-concentration serum environment. RNA sequencing indicated that 10% serum concentration from ACLF patients mediated the PI3K-Akt pathway to enhance the anti-inflammatory effect of MSCs, while the 50% serum concentration from ACLF patients promoted the conversion of MSCs into a proinflammatory function by affecting the cell cycle.
The 50% ACLF serum concentration is more similar to the environment in the human body, which means that direct peripheral blood intravenous infusion of MSCs may reduce the effect of transplantation. Combining treatments of plasma exchange to reduce harmful substances in serum may promote MSCs to exert a stronger anti-inflammatory effect. |
---|---|
ISSN: | 2225-0719 2310-8819 |
DOI: | 10.14218/JCTH.2021.00014 |