Loading…

Binary photoacoustic tomography for improved vasculature imaging

Significance: The proposed binary tomography approach was able to recover the vasculature structures accurately, which could potentially enable the utilization of binary tomography algorithm in scenarios such as therapy monitoring and hemorrhage detection in different organs. Aim: Photoacoustic tomo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical optics 2021-08, Vol.26 (8), p.086004-086004
Main Authors: Prakash, Jaya, Kalva, Sandeep Kumar, Pramanik, Manojit, Yalavarthy, Phaneendra K
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Significance: The proposed binary tomography approach was able to recover the vasculature structures accurately, which could potentially enable the utilization of binary tomography algorithm in scenarios such as therapy monitoring and hemorrhage detection in different organs. Aim: Photoacoustic tomography (PAT) involves reconstruction of vascular networks having direct implications in cancer research, cardiovascular studies, and neuroimaging. Various methods have been proposed for recovering vascular networks in photoacoustic imaging; however, most methods are two-step (image reconstruction and image segmentation) in nature. We propose a binary PAT approach wherein direct reconstruction of vascular network from the acquired photoacoustic sinogram data is plausible. Approach: Binary tomography approach relies on solving a dual-optimization problem to reconstruct images with every pixel resulting in a binary outcome (i.e., either background or the absorber). Further, the binary tomography approach was compared against backprojection, Tikhonov regularization, and sparse recovery-based schemes. Results: Numerical simulations, physical phantom experiment, and in-vivo rat brain vasculature data were used to compare the performance of different algorithms. The results indicate that the binary tomography approach improved the vasculature recovery by 10% using in-silico data with respect to the Dice similarity coefficient against the other reconstruction methods. Conclusion: The proposed algorithm demonstrates superior vasculature recovery with limited data both visually and based on quantitative image metrics.
ISSN:1083-3668
1560-2281
DOI:10.1117/1.JBO.26.8.086004