Loading…

Genome‐Wide Approach to Measure Variant‐Based Heritability of Drug Outcome Phenotypes

Pharmacogenomic studies have successfully identified variants—typically with large effect sizes in drug target and metabolism enzymes—that predict drug outcome phenotypes. However, these variants may account for a limited proportion of phenotype variability attributable to the genome. Using genome‐w...

Full description

Saved in:
Bibliographic Details
Published in:Clinical pharmacology and therapeutics 2021-09, Vol.110 (3), p.714-722
Main Authors: Muhammad, Ayesha, Aka, Ida T., Birdwell, Kelly A., Gordon, Adam S., Roden, Dan M., Wei, Wei‐Qi, Mosley, Jonathan D., Van Driest, Sara L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4103-dff776a22d8eb657c50ab1ba859431eb54149bd47466740766c9a8e86431c9b83
cites cdi_FETCH-LOGICAL-c4103-dff776a22d8eb657c50ab1ba859431eb54149bd47466740766c9a8e86431c9b83
container_end_page 722
container_issue 3
container_start_page 714
container_title Clinical pharmacology and therapeutics
container_volume 110
creator Muhammad, Ayesha
Aka, Ida T.
Birdwell, Kelly A.
Gordon, Adam S.
Roden, Dan M.
Wei, Wei‐Qi
Mosley, Jonathan D.
Van Driest, Sara L.
description Pharmacogenomic studies have successfully identified variants—typically with large effect sizes in drug target and metabolism enzymes—that predict drug outcome phenotypes. However, these variants may account for a limited proportion of phenotype variability attributable to the genome. Using genome‐wide common variation, we measured the narrow‐sense heritability (hSNP2) of seven pharmacodynamic and five pharmacokinetic phenotypes across three cardiovascular drugs, two antibiotics, and three immunosuppressants. We used a Bayesian hierarchical mixed model, BayesR, to model the distribution of genome‐wide variant effect sizes for each drug phenotype as a mixture of four normal distributions of fixed variance (0, 0.01%, 0.1%, and 1% of the total additive genetic variance). This model allowed us to parse hSNP2 into bins representing contributions of no‐effect, small‐effect, moderate‐effect, and large‐effect variants, respectively. For the 12 phenotypes, a median of 969 (range 235–6,304) unique individuals of European ancestry and a median of 1,201,626 (range 777,427–1,514,275) variants were included in our analyses. The number of variants contributing to hSNP2 ranged from 2,791 to 5,356 (median 3,347). Estimates for hSNP2 ranged from 0.05 (angiotensin‐converting enzyme inhibitor–induced cough) to 0.59 (gentamicin concentration). Small‐effect and moderate‐effect variants contributed a majority to hSNP2 for every phenotype (range 61–95%). We conclude that drug outcome phenotypes are highly polygenic. Thus, larger genome‐wide association studies of drug phenotypes are needed both to discover novel variants and to determine how genome‐wide approaches may improve clinical prediction of drug outcomes.
doi_str_mv 10.1002/cpt.2323
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543705075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4103-dff776a22d8eb657c50ab1ba859431eb54149bd47466740766c9a8e86431c9b83</originalsourceid><addsrcrecordid>eNp1kc9u1DAQhy0EoktB4gmQj1xS_N_OBaks0CIVtYcC4mQ5zqRrlI1T2wHtjUfgGXkSXFpWcOA0Gs2nb0bzQ-gpJUeUEPbCz-WIccbvoRWVnDVKcnkfrQghbdMyrg7Qo5y_1Fa0xjxEB1xQSQUzK_T5BKa4hZ_ff3wKPeDjeU7R-Q0uEb8Hl5cE-KNLwU2lIq9chh6fQgrFdWEMZYfjgF-n5QqfL8VXD77YVF_ZzZAfoweDGzM8uauH6MPbN5fr0-bs_OTd-vis8YIS3vTDoLVyjPUGOiW1l8R1tHNGtoJT6KSgou16oYVSWhCtlG-dAaPq1Led4Yfo5a13Xrot9B6mktxo5xS2Lu1sdMH-O5nCxl7Fr9ZwrbTkVfD8TpDi9QK52G3IHsbRTRCXbJkUXBNJKrtHfYo5Jxj2ayixN0nYmoS9SaKiz_4-aw_-eX0FmlvgWxhh91-RXV9c_hb-AnmclMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543705075</pqid></control><display><type>article</type><title>Genome‐Wide Approach to Measure Variant‐Based Heritability of Drug Outcome Phenotypes</title><source>Wiley</source><creator>Muhammad, Ayesha ; Aka, Ida T. ; Birdwell, Kelly A. ; Gordon, Adam S. ; Roden, Dan M. ; Wei, Wei‐Qi ; Mosley, Jonathan D. ; Van Driest, Sara L.</creator><creatorcontrib>Muhammad, Ayesha ; Aka, Ida T. ; Birdwell, Kelly A. ; Gordon, Adam S. ; Roden, Dan M. ; Wei, Wei‐Qi ; Mosley, Jonathan D. ; Van Driest, Sara L.</creatorcontrib><description>Pharmacogenomic studies have successfully identified variants—typically with large effect sizes in drug target and metabolism enzymes—that predict drug outcome phenotypes. However, these variants may account for a limited proportion of phenotype variability attributable to the genome. Using genome‐wide common variation, we measured the narrow‐sense heritability (hSNP2) of seven pharmacodynamic and five pharmacokinetic phenotypes across three cardiovascular drugs, two antibiotics, and three immunosuppressants. We used a Bayesian hierarchical mixed model, BayesR, to model the distribution of genome‐wide variant effect sizes for each drug phenotype as a mixture of four normal distributions of fixed variance (0, 0.01%, 0.1%, and 1% of the total additive genetic variance). This model allowed us to parse hSNP2 into bins representing contributions of no‐effect, small‐effect, moderate‐effect, and large‐effect variants, respectively. For the 12 phenotypes, a median of 969 (range 235–6,304) unique individuals of European ancestry and a median of 1,201,626 (range 777,427–1,514,275) variants were included in our analyses. The number of variants contributing to hSNP2 ranged from 2,791 to 5,356 (median 3,347). Estimates for hSNP2 ranged from 0.05 (angiotensin‐converting enzyme inhibitor–induced cough) to 0.59 (gentamicin concentration). Small‐effect and moderate‐effect variants contributed a majority to hSNP2 for every phenotype (range 61–95%). We conclude that drug outcome phenotypes are highly polygenic. Thus, larger genome‐wide association studies of drug phenotypes are needed both to discover novel variants and to determine how genome‐wide approaches may improve clinical prediction of drug outcomes.</description><identifier>ISSN: 0009-9236</identifier><identifier>ISSN: 1532-6535</identifier><identifier>EISSN: 1532-6535</identifier><identifier>DOI: 10.1002/cpt.2323</identifier><identifier>PMID: 34151428</identifier><language>eng</language><publisher>United States</publisher><subject>Adult ; Bayes Theorem ; Female ; Genetic Variation - genetics ; Genome-Wide Association Study - methods ; Humans ; Male ; Middle Aged ; Pharmaceutical Preparations - administration &amp; dosage ; Pharmacogenomic Testing - methods ; Phenotype</subject><ispartof>Clinical pharmacology and therapeutics, 2021-09, Vol.110 (3), p.714-722</ispartof><rights>2021 The Authors. © 2021 American Society for Clinical Pharmacology and Therapeutics</rights><rights>2021 The Authors. Clinical Pharmacology &amp; Therapeutics © 2021 American Society for Clinical Pharmacology and Therapeutics.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4103-dff776a22d8eb657c50ab1ba859431eb54149bd47466740766c9a8e86431c9b83</citedby><cites>FETCH-LOGICAL-c4103-dff776a22d8eb657c50ab1ba859431eb54149bd47466740766c9a8e86431c9b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34151428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muhammad, Ayesha</creatorcontrib><creatorcontrib>Aka, Ida T.</creatorcontrib><creatorcontrib>Birdwell, Kelly A.</creatorcontrib><creatorcontrib>Gordon, Adam S.</creatorcontrib><creatorcontrib>Roden, Dan M.</creatorcontrib><creatorcontrib>Wei, Wei‐Qi</creatorcontrib><creatorcontrib>Mosley, Jonathan D.</creatorcontrib><creatorcontrib>Van Driest, Sara L.</creatorcontrib><title>Genome‐Wide Approach to Measure Variant‐Based Heritability of Drug Outcome Phenotypes</title><title>Clinical pharmacology and therapeutics</title><addtitle>Clin Pharmacol Ther</addtitle><description>Pharmacogenomic studies have successfully identified variants—typically with large effect sizes in drug target and metabolism enzymes—that predict drug outcome phenotypes. However, these variants may account for a limited proportion of phenotype variability attributable to the genome. Using genome‐wide common variation, we measured the narrow‐sense heritability (hSNP2) of seven pharmacodynamic and five pharmacokinetic phenotypes across three cardiovascular drugs, two antibiotics, and three immunosuppressants. We used a Bayesian hierarchical mixed model, BayesR, to model the distribution of genome‐wide variant effect sizes for each drug phenotype as a mixture of four normal distributions of fixed variance (0, 0.01%, 0.1%, and 1% of the total additive genetic variance). This model allowed us to parse hSNP2 into bins representing contributions of no‐effect, small‐effect, moderate‐effect, and large‐effect variants, respectively. For the 12 phenotypes, a median of 969 (range 235–6,304) unique individuals of European ancestry and a median of 1,201,626 (range 777,427–1,514,275) variants were included in our analyses. The number of variants contributing to hSNP2 ranged from 2,791 to 5,356 (median 3,347). Estimates for hSNP2 ranged from 0.05 (angiotensin‐converting enzyme inhibitor–induced cough) to 0.59 (gentamicin concentration). Small‐effect and moderate‐effect variants contributed a majority to hSNP2 for every phenotype (range 61–95%). We conclude that drug outcome phenotypes are highly polygenic. Thus, larger genome‐wide association studies of drug phenotypes are needed both to discover novel variants and to determine how genome‐wide approaches may improve clinical prediction of drug outcomes.</description><subject>Adult</subject><subject>Bayes Theorem</subject><subject>Female</subject><subject>Genetic Variation - genetics</subject><subject>Genome-Wide Association Study - methods</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Pharmaceutical Preparations - administration &amp; dosage</subject><subject>Pharmacogenomic Testing - methods</subject><subject>Phenotype</subject><issn>0009-9236</issn><issn>1532-6535</issn><issn>1532-6535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQhy0EoktB4gmQj1xS_N_OBaks0CIVtYcC4mQ5zqRrlI1T2wHtjUfgGXkSXFpWcOA0Gs2nb0bzQ-gpJUeUEPbCz-WIccbvoRWVnDVKcnkfrQghbdMyrg7Qo5y_1Fa0xjxEB1xQSQUzK_T5BKa4hZ_ff3wKPeDjeU7R-Q0uEb8Hl5cE-KNLwU2lIq9chh6fQgrFdWEMZYfjgF-n5QqfL8VXD77YVF_ZzZAfoweDGzM8uauH6MPbN5fr0-bs_OTd-vis8YIS3vTDoLVyjPUGOiW1l8R1tHNGtoJT6KSgou16oYVSWhCtlG-dAaPq1Led4Yfo5a13Xrot9B6mktxo5xS2Lu1sdMH-O5nCxl7Fr9ZwrbTkVfD8TpDi9QK52G3IHsbRTRCXbJkUXBNJKrtHfYo5Jxj2ayixN0nYmoS9SaKiz_4-aw_-eX0FmlvgWxhh91-RXV9c_hb-AnmclMw</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Muhammad, Ayesha</creator><creator>Aka, Ida T.</creator><creator>Birdwell, Kelly A.</creator><creator>Gordon, Adam S.</creator><creator>Roden, Dan M.</creator><creator>Wei, Wei‐Qi</creator><creator>Mosley, Jonathan D.</creator><creator>Van Driest, Sara L.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202109</creationdate><title>Genome‐Wide Approach to Measure Variant‐Based Heritability of Drug Outcome Phenotypes</title><author>Muhammad, Ayesha ; Aka, Ida T. ; Birdwell, Kelly A. ; Gordon, Adam S. ; Roden, Dan M. ; Wei, Wei‐Qi ; Mosley, Jonathan D. ; Van Driest, Sara L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4103-dff776a22d8eb657c50ab1ba859431eb54149bd47466740766c9a8e86431c9b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Bayes Theorem</topic><topic>Female</topic><topic>Genetic Variation - genetics</topic><topic>Genome-Wide Association Study - methods</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Pharmaceutical Preparations - administration &amp; dosage</topic><topic>Pharmacogenomic Testing - methods</topic><topic>Phenotype</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muhammad, Ayesha</creatorcontrib><creatorcontrib>Aka, Ida T.</creatorcontrib><creatorcontrib>Birdwell, Kelly A.</creatorcontrib><creatorcontrib>Gordon, Adam S.</creatorcontrib><creatorcontrib>Roden, Dan M.</creatorcontrib><creatorcontrib>Wei, Wei‐Qi</creatorcontrib><creatorcontrib>Mosley, Jonathan D.</creatorcontrib><creatorcontrib>Van Driest, Sara L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical pharmacology and therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhammad, Ayesha</au><au>Aka, Ida T.</au><au>Birdwell, Kelly A.</au><au>Gordon, Adam S.</au><au>Roden, Dan M.</au><au>Wei, Wei‐Qi</au><au>Mosley, Jonathan D.</au><au>Van Driest, Sara L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome‐Wide Approach to Measure Variant‐Based Heritability of Drug Outcome Phenotypes</atitle><jtitle>Clinical pharmacology and therapeutics</jtitle><addtitle>Clin Pharmacol Ther</addtitle><date>2021-09</date><risdate>2021</risdate><volume>110</volume><issue>3</issue><spage>714</spage><epage>722</epage><pages>714-722</pages><issn>0009-9236</issn><issn>1532-6535</issn><eissn>1532-6535</eissn><abstract>Pharmacogenomic studies have successfully identified variants—typically with large effect sizes in drug target and metabolism enzymes—that predict drug outcome phenotypes. However, these variants may account for a limited proportion of phenotype variability attributable to the genome. Using genome‐wide common variation, we measured the narrow‐sense heritability (hSNP2) of seven pharmacodynamic and five pharmacokinetic phenotypes across three cardiovascular drugs, two antibiotics, and three immunosuppressants. We used a Bayesian hierarchical mixed model, BayesR, to model the distribution of genome‐wide variant effect sizes for each drug phenotype as a mixture of four normal distributions of fixed variance (0, 0.01%, 0.1%, and 1% of the total additive genetic variance). This model allowed us to parse hSNP2 into bins representing contributions of no‐effect, small‐effect, moderate‐effect, and large‐effect variants, respectively. For the 12 phenotypes, a median of 969 (range 235–6,304) unique individuals of European ancestry and a median of 1,201,626 (range 777,427–1,514,275) variants were included in our analyses. The number of variants contributing to hSNP2 ranged from 2,791 to 5,356 (median 3,347). Estimates for hSNP2 ranged from 0.05 (angiotensin‐converting enzyme inhibitor–induced cough) to 0.59 (gentamicin concentration). Small‐effect and moderate‐effect variants contributed a majority to hSNP2 for every phenotype (range 61–95%). We conclude that drug outcome phenotypes are highly polygenic. Thus, larger genome‐wide association studies of drug phenotypes are needed both to discover novel variants and to determine how genome‐wide approaches may improve clinical prediction of drug outcomes.</abstract><cop>United States</cop><pmid>34151428</pmid><doi>10.1002/cpt.2323</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-9236
ispartof Clinical pharmacology and therapeutics, 2021-09, Vol.110 (3), p.714-722
issn 0009-9236
1532-6535
1532-6535
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376753
source Wiley
subjects Adult
Bayes Theorem
Female
Genetic Variation - genetics
Genome-Wide Association Study - methods
Humans
Male
Middle Aged
Pharmaceutical Preparations - administration & dosage
Pharmacogenomic Testing - methods
Phenotype
title Genome‐Wide Approach to Measure Variant‐Based Heritability of Drug Outcome Phenotypes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%E2%80%90Wide%20Approach%20to%20Measure%20Variant%E2%80%90Based%20Heritability%20of%20Drug%20Outcome%20Phenotypes&rft.jtitle=Clinical%20pharmacology%20and%20therapeutics&rft.au=Muhammad,%20Ayesha&rft.date=2021-09&rft.volume=110&rft.issue=3&rft.spage=714&rft.epage=722&rft.pages=714-722&rft.issn=0009-9236&rft.eissn=1532-6535&rft_id=info:doi/10.1002/cpt.2323&rft_dat=%3Cproquest_pubme%3E2543705075%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4103-dff776a22d8eb657c50ab1ba859431eb54149bd47466740766c9a8e86431c9b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2543705075&rft_id=info:pmid/34151428&rfr_iscdi=true