Loading…
Genome‐Wide Approach to Measure Variant‐Based Heritability of Drug Outcome Phenotypes
Pharmacogenomic studies have successfully identified variants—typically with large effect sizes in drug target and metabolism enzymes—that predict drug outcome phenotypes. However, these variants may account for a limited proportion of phenotype variability attributable to the genome. Using genome‐w...
Saved in:
Published in: | Clinical pharmacology and therapeutics 2021-09, Vol.110 (3), p.714-722 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4103-dff776a22d8eb657c50ab1ba859431eb54149bd47466740766c9a8e86431c9b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c4103-dff776a22d8eb657c50ab1ba859431eb54149bd47466740766c9a8e86431c9b83 |
container_end_page | 722 |
container_issue | 3 |
container_start_page | 714 |
container_title | Clinical pharmacology and therapeutics |
container_volume | 110 |
creator | Muhammad, Ayesha Aka, Ida T. Birdwell, Kelly A. Gordon, Adam S. Roden, Dan M. Wei, Wei‐Qi Mosley, Jonathan D. Van Driest, Sara L. |
description | Pharmacogenomic studies have successfully identified variants—typically with large effect sizes in drug target and metabolism enzymes—that predict drug outcome phenotypes. However, these variants may account for a limited proportion of phenotype variability attributable to the genome. Using genome‐wide common variation, we measured the narrow‐sense heritability (hSNP2) of seven pharmacodynamic and five pharmacokinetic phenotypes across three cardiovascular drugs, two antibiotics, and three immunosuppressants. We used a Bayesian hierarchical mixed model, BayesR, to model the distribution of genome‐wide variant effect sizes for each drug phenotype as a mixture of four normal distributions of fixed variance (0, 0.01%, 0.1%, and 1% of the total additive genetic variance). This model allowed us to parse hSNP2 into bins representing contributions of no‐effect, small‐effect, moderate‐effect, and large‐effect variants, respectively. For the 12 phenotypes, a median of 969 (range 235–6,304) unique individuals of European ancestry and a median of 1,201,626 (range 777,427–1,514,275) variants were included in our analyses. The number of variants contributing to hSNP2 ranged from 2,791 to 5,356 (median 3,347). Estimates for hSNP2 ranged from 0.05 (angiotensin‐converting enzyme inhibitor–induced cough) to 0.59 (gentamicin concentration). Small‐effect and moderate‐effect variants contributed a majority to hSNP2 for every phenotype (range 61–95%). We conclude that drug outcome phenotypes are highly polygenic. Thus, larger genome‐wide association studies of drug phenotypes are needed both to discover novel variants and to determine how genome‐wide approaches may improve clinical prediction of drug outcomes. |
doi_str_mv | 10.1002/cpt.2323 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543705075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4103-dff776a22d8eb657c50ab1ba859431eb54149bd47466740766c9a8e86431c9b83</originalsourceid><addsrcrecordid>eNp1kc9u1DAQhy0EoktB4gmQj1xS_N_OBaks0CIVtYcC4mQ5zqRrlI1T2wHtjUfgGXkSXFpWcOA0Gs2nb0bzQ-gpJUeUEPbCz-WIccbvoRWVnDVKcnkfrQghbdMyrg7Qo5y_1Fa0xjxEB1xQSQUzK_T5BKa4hZ_ff3wKPeDjeU7R-Q0uEb8Hl5cE-KNLwU2lIq9chh6fQgrFdWEMZYfjgF-n5QqfL8VXD77YVF_ZzZAfoweDGzM8uauH6MPbN5fr0-bs_OTd-vis8YIS3vTDoLVyjPUGOiW1l8R1tHNGtoJT6KSgou16oYVSWhCtlG-dAaPq1Led4Yfo5a13Xrot9B6mktxo5xS2Lu1sdMH-O5nCxl7Fr9ZwrbTkVfD8TpDi9QK52G3IHsbRTRCXbJkUXBNJKrtHfYo5Jxj2ayixN0nYmoS9SaKiz_4-aw_-eX0FmlvgWxhh91-RXV9c_hb-AnmclMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543705075</pqid></control><display><type>article</type><title>Genome‐Wide Approach to Measure Variant‐Based Heritability of Drug Outcome Phenotypes</title><source>Wiley</source><creator>Muhammad, Ayesha ; Aka, Ida T. ; Birdwell, Kelly A. ; Gordon, Adam S. ; Roden, Dan M. ; Wei, Wei‐Qi ; Mosley, Jonathan D. ; Van Driest, Sara L.</creator><creatorcontrib>Muhammad, Ayesha ; Aka, Ida T. ; Birdwell, Kelly A. ; Gordon, Adam S. ; Roden, Dan M. ; Wei, Wei‐Qi ; Mosley, Jonathan D. ; Van Driest, Sara L.</creatorcontrib><description>Pharmacogenomic studies have successfully identified variants—typically with large effect sizes in drug target and metabolism enzymes—that predict drug outcome phenotypes. However, these variants may account for a limited proportion of phenotype variability attributable to the genome. Using genome‐wide common variation, we measured the narrow‐sense heritability (hSNP2) of seven pharmacodynamic and five pharmacokinetic phenotypes across three cardiovascular drugs, two antibiotics, and three immunosuppressants. We used a Bayesian hierarchical mixed model, BayesR, to model the distribution of genome‐wide variant effect sizes for each drug phenotype as a mixture of four normal distributions of fixed variance (0, 0.01%, 0.1%, and 1% of the total additive genetic variance). This model allowed us to parse hSNP2 into bins representing contributions of no‐effect, small‐effect, moderate‐effect, and large‐effect variants, respectively. For the 12 phenotypes, a median of 969 (range 235–6,304) unique individuals of European ancestry and a median of 1,201,626 (range 777,427–1,514,275) variants were included in our analyses. The number of variants contributing to hSNP2 ranged from 2,791 to 5,356 (median 3,347). Estimates for hSNP2 ranged from 0.05 (angiotensin‐converting enzyme inhibitor–induced cough) to 0.59 (gentamicin concentration). Small‐effect and moderate‐effect variants contributed a majority to hSNP2 for every phenotype (range 61–95%). We conclude that drug outcome phenotypes are highly polygenic. Thus, larger genome‐wide association studies of drug phenotypes are needed both to discover novel variants and to determine how genome‐wide approaches may improve clinical prediction of drug outcomes.</description><identifier>ISSN: 0009-9236</identifier><identifier>ISSN: 1532-6535</identifier><identifier>EISSN: 1532-6535</identifier><identifier>DOI: 10.1002/cpt.2323</identifier><identifier>PMID: 34151428</identifier><language>eng</language><publisher>United States</publisher><subject>Adult ; Bayes Theorem ; Female ; Genetic Variation - genetics ; Genome-Wide Association Study - methods ; Humans ; Male ; Middle Aged ; Pharmaceutical Preparations - administration & dosage ; Pharmacogenomic Testing - methods ; Phenotype</subject><ispartof>Clinical pharmacology and therapeutics, 2021-09, Vol.110 (3), p.714-722</ispartof><rights>2021 The Authors. © 2021 American Society for Clinical Pharmacology and Therapeutics</rights><rights>2021 The Authors. Clinical Pharmacology & Therapeutics © 2021 American Society for Clinical Pharmacology and Therapeutics.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4103-dff776a22d8eb657c50ab1ba859431eb54149bd47466740766c9a8e86431c9b83</citedby><cites>FETCH-LOGICAL-c4103-dff776a22d8eb657c50ab1ba859431eb54149bd47466740766c9a8e86431c9b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34151428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muhammad, Ayesha</creatorcontrib><creatorcontrib>Aka, Ida T.</creatorcontrib><creatorcontrib>Birdwell, Kelly A.</creatorcontrib><creatorcontrib>Gordon, Adam S.</creatorcontrib><creatorcontrib>Roden, Dan M.</creatorcontrib><creatorcontrib>Wei, Wei‐Qi</creatorcontrib><creatorcontrib>Mosley, Jonathan D.</creatorcontrib><creatorcontrib>Van Driest, Sara L.</creatorcontrib><title>Genome‐Wide Approach to Measure Variant‐Based Heritability of Drug Outcome Phenotypes</title><title>Clinical pharmacology and therapeutics</title><addtitle>Clin Pharmacol Ther</addtitle><description>Pharmacogenomic studies have successfully identified variants—typically with large effect sizes in drug target and metabolism enzymes—that predict drug outcome phenotypes. However, these variants may account for a limited proportion of phenotype variability attributable to the genome. Using genome‐wide common variation, we measured the narrow‐sense heritability (hSNP2) of seven pharmacodynamic and five pharmacokinetic phenotypes across three cardiovascular drugs, two antibiotics, and three immunosuppressants. We used a Bayesian hierarchical mixed model, BayesR, to model the distribution of genome‐wide variant effect sizes for each drug phenotype as a mixture of four normal distributions of fixed variance (0, 0.01%, 0.1%, and 1% of the total additive genetic variance). This model allowed us to parse hSNP2 into bins representing contributions of no‐effect, small‐effect, moderate‐effect, and large‐effect variants, respectively. For the 12 phenotypes, a median of 969 (range 235–6,304) unique individuals of European ancestry and a median of 1,201,626 (range 777,427–1,514,275) variants were included in our analyses. The number of variants contributing to hSNP2 ranged from 2,791 to 5,356 (median 3,347). Estimates for hSNP2 ranged from 0.05 (angiotensin‐converting enzyme inhibitor–induced cough) to 0.59 (gentamicin concentration). Small‐effect and moderate‐effect variants contributed a majority to hSNP2 for every phenotype (range 61–95%). We conclude that drug outcome phenotypes are highly polygenic. Thus, larger genome‐wide association studies of drug phenotypes are needed both to discover novel variants and to determine how genome‐wide approaches may improve clinical prediction of drug outcomes.</description><subject>Adult</subject><subject>Bayes Theorem</subject><subject>Female</subject><subject>Genetic Variation - genetics</subject><subject>Genome-Wide Association Study - methods</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Pharmaceutical Preparations - administration & dosage</subject><subject>Pharmacogenomic Testing - methods</subject><subject>Phenotype</subject><issn>0009-9236</issn><issn>1532-6535</issn><issn>1532-6535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQhy0EoktB4gmQj1xS_N_OBaks0CIVtYcC4mQ5zqRrlI1T2wHtjUfgGXkSXFpWcOA0Gs2nb0bzQ-gpJUeUEPbCz-WIccbvoRWVnDVKcnkfrQghbdMyrg7Qo5y_1Fa0xjxEB1xQSQUzK_T5BKa4hZ_ff3wKPeDjeU7R-Q0uEb8Hl5cE-KNLwU2lIq9chh6fQgrFdWEMZYfjgF-n5QqfL8VXD77YVF_ZzZAfoweDGzM8uauH6MPbN5fr0-bs_OTd-vis8YIS3vTDoLVyjPUGOiW1l8R1tHNGtoJT6KSgou16oYVSWhCtlG-dAaPq1Led4Yfo5a13Xrot9B6mktxo5xS2Lu1sdMH-O5nCxl7Fr9ZwrbTkVfD8TpDi9QK52G3IHsbRTRCXbJkUXBNJKrtHfYo5Jxj2ayixN0nYmoS9SaKiz_4-aw_-eX0FmlvgWxhh91-RXV9c_hb-AnmclMw</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Muhammad, Ayesha</creator><creator>Aka, Ida T.</creator><creator>Birdwell, Kelly A.</creator><creator>Gordon, Adam S.</creator><creator>Roden, Dan M.</creator><creator>Wei, Wei‐Qi</creator><creator>Mosley, Jonathan D.</creator><creator>Van Driest, Sara L.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202109</creationdate><title>Genome‐Wide Approach to Measure Variant‐Based Heritability of Drug Outcome Phenotypes</title><author>Muhammad, Ayesha ; Aka, Ida T. ; Birdwell, Kelly A. ; Gordon, Adam S. ; Roden, Dan M. ; Wei, Wei‐Qi ; Mosley, Jonathan D. ; Van Driest, Sara L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4103-dff776a22d8eb657c50ab1ba859431eb54149bd47466740766c9a8e86431c9b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Bayes Theorem</topic><topic>Female</topic><topic>Genetic Variation - genetics</topic><topic>Genome-Wide Association Study - methods</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Pharmaceutical Preparations - administration & dosage</topic><topic>Pharmacogenomic Testing - methods</topic><topic>Phenotype</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muhammad, Ayesha</creatorcontrib><creatorcontrib>Aka, Ida T.</creatorcontrib><creatorcontrib>Birdwell, Kelly A.</creatorcontrib><creatorcontrib>Gordon, Adam S.</creatorcontrib><creatorcontrib>Roden, Dan M.</creatorcontrib><creatorcontrib>Wei, Wei‐Qi</creatorcontrib><creatorcontrib>Mosley, Jonathan D.</creatorcontrib><creatorcontrib>Van Driest, Sara L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical pharmacology and therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhammad, Ayesha</au><au>Aka, Ida T.</au><au>Birdwell, Kelly A.</au><au>Gordon, Adam S.</au><au>Roden, Dan M.</au><au>Wei, Wei‐Qi</au><au>Mosley, Jonathan D.</au><au>Van Driest, Sara L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome‐Wide Approach to Measure Variant‐Based Heritability of Drug Outcome Phenotypes</atitle><jtitle>Clinical pharmacology and therapeutics</jtitle><addtitle>Clin Pharmacol Ther</addtitle><date>2021-09</date><risdate>2021</risdate><volume>110</volume><issue>3</issue><spage>714</spage><epage>722</epage><pages>714-722</pages><issn>0009-9236</issn><issn>1532-6535</issn><eissn>1532-6535</eissn><abstract>Pharmacogenomic studies have successfully identified variants—typically with large effect sizes in drug target and metabolism enzymes—that predict drug outcome phenotypes. However, these variants may account for a limited proportion of phenotype variability attributable to the genome. Using genome‐wide common variation, we measured the narrow‐sense heritability (hSNP2) of seven pharmacodynamic and five pharmacokinetic phenotypes across three cardiovascular drugs, two antibiotics, and three immunosuppressants. We used a Bayesian hierarchical mixed model, BayesR, to model the distribution of genome‐wide variant effect sizes for each drug phenotype as a mixture of four normal distributions of fixed variance (0, 0.01%, 0.1%, and 1% of the total additive genetic variance). This model allowed us to parse hSNP2 into bins representing contributions of no‐effect, small‐effect, moderate‐effect, and large‐effect variants, respectively. For the 12 phenotypes, a median of 969 (range 235–6,304) unique individuals of European ancestry and a median of 1,201,626 (range 777,427–1,514,275) variants were included in our analyses. The number of variants contributing to hSNP2 ranged from 2,791 to 5,356 (median 3,347). Estimates for hSNP2 ranged from 0.05 (angiotensin‐converting enzyme inhibitor–induced cough) to 0.59 (gentamicin concentration). Small‐effect and moderate‐effect variants contributed a majority to hSNP2 for every phenotype (range 61–95%). We conclude that drug outcome phenotypes are highly polygenic. Thus, larger genome‐wide association studies of drug phenotypes are needed both to discover novel variants and to determine how genome‐wide approaches may improve clinical prediction of drug outcomes.</abstract><cop>United States</cop><pmid>34151428</pmid><doi>10.1002/cpt.2323</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-9236 |
ispartof | Clinical pharmacology and therapeutics, 2021-09, Vol.110 (3), p.714-722 |
issn | 0009-9236 1532-6535 1532-6535 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376753 |
source | Wiley |
subjects | Adult Bayes Theorem Female Genetic Variation - genetics Genome-Wide Association Study - methods Humans Male Middle Aged Pharmaceutical Preparations - administration & dosage Pharmacogenomic Testing - methods Phenotype |
title | Genome‐Wide Approach to Measure Variant‐Based Heritability of Drug Outcome Phenotypes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%E2%80%90Wide%20Approach%20to%20Measure%20Variant%E2%80%90Based%20Heritability%20of%20Drug%20Outcome%20Phenotypes&rft.jtitle=Clinical%20pharmacology%20and%20therapeutics&rft.au=Muhammad,%20Ayesha&rft.date=2021-09&rft.volume=110&rft.issue=3&rft.spage=714&rft.epage=722&rft.pages=714-722&rft.issn=0009-9236&rft.eissn=1532-6535&rft_id=info:doi/10.1002/cpt.2323&rft_dat=%3Cproquest_pubme%3E2543705075%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4103-dff776a22d8eb657c50ab1ba859431eb54149bd47466740766c9a8e86431c9b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2543705075&rft_id=info:pmid/34151428&rfr_iscdi=true |