Loading…

Novelty and Convergence in Adaptation to Whole Genome Duplication

Abstract Whole genome duplication (WGD) can promote adaptation but is disruptive to conserved processes, especially meiosis. Studies in Arabidopsis arenosa revealed a coordinated evolutionary response to WGD involving interacting proteins controlling meiotic crossovers, which are minimized in an aut...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology and evolution 2021-09, Vol.38 (9), p.3910-3924
Main Authors: Bohutínská, Magdalena, Alston, Mark, Monnahan, Patrick, Mandáková, Terezie, Bray, Sian, Paajanen, Pirita, Kolář, Filip, Yant, Levi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-5005e7a463f4ecc7093318f6cdcf101c25d6779bc615f72057542f6821d142a93
cites cdi_FETCH-LOGICAL-c487t-5005e7a463f4ecc7093318f6cdcf101c25d6779bc615f72057542f6821d142a93
container_end_page 3924
container_issue 9
container_start_page 3910
container_title Molecular biology and evolution
container_volume 38
creator Bohutínská, Magdalena
Alston, Mark
Monnahan, Patrick
Mandáková, Terezie
Bray, Sian
Paajanen, Pirita
Kolář, Filip
Yant, Levi
description Abstract Whole genome duplication (WGD) can promote adaptation but is disruptive to conserved processes, especially meiosis. Studies in Arabidopsis arenosa revealed a coordinated evolutionary response to WGD involving interacting proteins controlling meiotic crossovers, which are minimized in an autotetraploid (within-species polyploid) to avoid missegregation. Here, we test whether this surprising flexibility of a conserved essential process, meiosis, is recapitulated in an independent WGD system, Cardamine amara, 17 My diverged from A. arenosa. We assess meiotic stability and perform population-based scans for positive selection, contrasting the genomic response to WGD in C. amara with that of A. arenosa. We found in C. amara the strongest selection signals at genes with predicted functions thought important to adaptation to WGD: meiosis, chromosome remodeling, cell cycle, and ion transport. However, genomic responses to WGD in the two species differ: minimal ortholog-level convergence emerged, with none of the meiosis genes found in A. arenosa exhibiting strong signal in C. amara. This is consistent with our observations of lower meiotic stability and occasional clonal spreading in diploid C. amara, suggesting that nascent C. amara autotetraploid lineages were preadapted by their diploid lifestyle to survive while enduring reduced meiotic fidelity. However, in contrast to a lack of ortholog convergence, we see process-level and network convergence in DNA management, chromosome organization, stress signaling, and ion homeostasis processes. This gives the first insight into the salient adaptations required to meet the challenges of a WGD state and shows that autopolyploids can utilize multiple evolutionary trajectories to adapt to WGD.
doi_str_mv 10.1093/molbev/msab096
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8382928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775440985</galeid><oup_id>10.1093/molbev/msab096</oup_id><sourcerecordid>A775440985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-5005e7a463f4ecc7093318f6cdcf101c25d6779bc615f72057542f6821d142a93</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRAV_YArR8ixPWzrjzi2L0irBQpSBRcQR8vrjLdGjh3sZKX-e1yylHKq5uCR5703b_QQek3wJcGKXQ0pbGF_NRSzxap7hk4IZ2JFBFHPH_XH6LSUnxiTtu26F-iYMSEZx-oErb-kPYTprjGxbzYp7iHvIFpofGzWvRknM_kUmyk1P25TgOYaYhqgeT-Pwds_s5foyJlQ4NXhPUPfP374tvm0uvl6_XmzvlnZVoppxTHmIEzbMdeCtaKaZ0S6zvbWEUws5X0nhNrajnAnKOaCt9R1kpKetNQodobeLbrjvB2gtxCnbIIesx9MvtPJeP3_JPpbvUt7LZmkisoq8HYRsNmXyUcdUzaaYMmpVoxgURHnhxU5_ZqhTHrwxUIIJkKai6YcC9Iqye_dXC7QnQmgfXSp7rS1ehi8TRGcr_9rUa9ocWX8I9icSsngHpwTrO-j1EuU-hBlJbx5fO8D_G92FXCxANI8PiX2G21kqPc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507149859</pqid></control><display><type>article</type><title>Novelty and Convergence in Adaptation to Whole Genome Duplication</title><source>NORA - Norwegian Open Research Archives</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bohutínská, Magdalena ; Alston, Mark ; Monnahan, Patrick ; Mandáková, Terezie ; Bray, Sian ; Paajanen, Pirita ; Kolář, Filip ; Yant, Levi</creator><contributor>Purugganan, Michael</contributor><creatorcontrib>Bohutínská, Magdalena ; Alston, Mark ; Monnahan, Patrick ; Mandáková, Terezie ; Bray, Sian ; Paajanen, Pirita ; Kolář, Filip ; Yant, Levi ; Purugganan, Michael</creatorcontrib><description>Abstract Whole genome duplication (WGD) can promote adaptation but is disruptive to conserved processes, especially meiosis. Studies in Arabidopsis arenosa revealed a coordinated evolutionary response to WGD involving interacting proteins controlling meiotic crossovers, which are minimized in an autotetraploid (within-species polyploid) to avoid missegregation. Here, we test whether this surprising flexibility of a conserved essential process, meiosis, is recapitulated in an independent WGD system, Cardamine amara, 17 My diverged from A. arenosa. We assess meiotic stability and perform population-based scans for positive selection, contrasting the genomic response to WGD in C. amara with that of A. arenosa. We found in C. amara the strongest selection signals at genes with predicted functions thought important to adaptation to WGD: meiosis, chromosome remodeling, cell cycle, and ion transport. However, genomic responses to WGD in the two species differ: minimal ortholog-level convergence emerged, with none of the meiosis genes found in A. arenosa exhibiting strong signal in C. amara. This is consistent with our observations of lower meiotic stability and occasional clonal spreading in diploid C. amara, suggesting that nascent C. amara autotetraploid lineages were preadapted by their diploid lifestyle to survive while enduring reduced meiotic fidelity. However, in contrast to a lack of ortholog convergence, we see process-level and network convergence in DNA management, chromosome organization, stress signaling, and ion homeostasis processes. This gives the first insight into the salient adaptations required to meet the challenges of a WGD state and shows that autopolyploids can utilize multiple evolutionary trajectories to adapt to WGD.</description><identifier>ISSN: 1537-1719</identifier><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msab096</identifier><identifier>PMID: 33783509</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Arabidopsis - genetics ; Arabidopsis thaliana ; Biotechnology industry ; Chromosome Segregation ; Discoveries ; Gene Duplication ; Genome, Plant ; Genomes ; Genomics ; Meiosis - genetics ; Polyploidy ; Proteins</subject><ispartof>Molecular biology and evolution, 2021-09, Vol.38 (9), p.3910-3924</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-5005e7a463f4ecc7093318f6cdcf101c25d6779bc615f72057542f6821d142a93</citedby><cites>FETCH-LOGICAL-c487t-5005e7a463f4ecc7093318f6cdcf101c25d6779bc615f72057542f6821d142a93</cites><orcidid>0000-0002-0561-3717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382928/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382928/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,26567,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33783509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Purugganan, Michael</contributor><creatorcontrib>Bohutínská, Magdalena</creatorcontrib><creatorcontrib>Alston, Mark</creatorcontrib><creatorcontrib>Monnahan, Patrick</creatorcontrib><creatorcontrib>Mandáková, Terezie</creatorcontrib><creatorcontrib>Bray, Sian</creatorcontrib><creatorcontrib>Paajanen, Pirita</creatorcontrib><creatorcontrib>Kolář, Filip</creatorcontrib><creatorcontrib>Yant, Levi</creatorcontrib><title>Novelty and Convergence in Adaptation to Whole Genome Duplication</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Abstract Whole genome duplication (WGD) can promote adaptation but is disruptive to conserved processes, especially meiosis. Studies in Arabidopsis arenosa revealed a coordinated evolutionary response to WGD involving interacting proteins controlling meiotic crossovers, which are minimized in an autotetraploid (within-species polyploid) to avoid missegregation. Here, we test whether this surprising flexibility of a conserved essential process, meiosis, is recapitulated in an independent WGD system, Cardamine amara, 17 My diverged from A. arenosa. We assess meiotic stability and perform population-based scans for positive selection, contrasting the genomic response to WGD in C. amara with that of A. arenosa. We found in C. amara the strongest selection signals at genes with predicted functions thought important to adaptation to WGD: meiosis, chromosome remodeling, cell cycle, and ion transport. However, genomic responses to WGD in the two species differ: minimal ortholog-level convergence emerged, with none of the meiosis genes found in A. arenosa exhibiting strong signal in C. amara. This is consistent with our observations of lower meiotic stability and occasional clonal spreading in diploid C. amara, suggesting that nascent C. amara autotetraploid lineages were preadapted by their diploid lifestyle to survive while enduring reduced meiotic fidelity. However, in contrast to a lack of ortholog convergence, we see process-level and network convergence in DNA management, chromosome organization, stress signaling, and ion homeostasis processes. This gives the first insight into the salient adaptations required to meet the challenges of a WGD state and shows that autopolyploids can utilize multiple evolutionary trajectories to adapt to WGD.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Biotechnology industry</subject><subject>Chromosome Segregation</subject><subject>Discoveries</subject><subject>Gene Duplication</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Meiosis - genetics</subject><subject>Polyploidy</subject><subject>Proteins</subject><issn>1537-1719</issn><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>3HK</sourceid><recordid>eNqFUU1v1DAQtRAV_YArR8ixPWzrjzi2L0irBQpSBRcQR8vrjLdGjh3sZKX-e1yylHKq5uCR5703b_QQek3wJcGKXQ0pbGF_NRSzxap7hk4IZ2JFBFHPH_XH6LSUnxiTtu26F-iYMSEZx-oErb-kPYTprjGxbzYp7iHvIFpofGzWvRknM_kUmyk1P25TgOYaYhqgeT-Pwds_s5foyJlQ4NXhPUPfP374tvm0uvl6_XmzvlnZVoppxTHmIEzbMdeCtaKaZ0S6zvbWEUws5X0nhNrajnAnKOaCt9R1kpKetNQodobeLbrjvB2gtxCnbIIesx9MvtPJeP3_JPpbvUt7LZmkisoq8HYRsNmXyUcdUzaaYMmpVoxgURHnhxU5_ZqhTHrwxUIIJkKai6YcC9Iqye_dXC7QnQmgfXSp7rS1ehi8TRGcr_9rUa9ocWX8I9icSsngHpwTrO-j1EuU-hBlJbx5fO8D_G92FXCxANI8PiX2G21kqPc</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Bohutínská, Magdalena</creator><creator>Alston, Mark</creator><creator>Monnahan, Patrick</creator><creator>Mandáková, Terezie</creator><creator>Bray, Sian</creator><creator>Paajanen, Pirita</creator><creator>Kolář, Filip</creator><creator>Yant, Levi</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0561-3717</orcidid></search><sort><creationdate>20210901</creationdate><title>Novelty and Convergence in Adaptation to Whole Genome Duplication</title><author>Bohutínská, Magdalena ; Alston, Mark ; Monnahan, Patrick ; Mandáková, Terezie ; Bray, Sian ; Paajanen, Pirita ; Kolář, Filip ; Yant, Levi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-5005e7a463f4ecc7093318f6cdcf101c25d6779bc615f72057542f6821d142a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Biotechnology industry</topic><topic>Chromosome Segregation</topic><topic>Discoveries</topic><topic>Gene Duplication</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Meiosis - genetics</topic><topic>Polyploidy</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohutínská, Magdalena</creatorcontrib><creatorcontrib>Alston, Mark</creatorcontrib><creatorcontrib>Monnahan, Patrick</creatorcontrib><creatorcontrib>Mandáková, Terezie</creatorcontrib><creatorcontrib>Bray, Sian</creatorcontrib><creatorcontrib>Paajanen, Pirita</creatorcontrib><creatorcontrib>Kolář, Filip</creatorcontrib><creatorcontrib>Yant, Levi</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohutínská, Magdalena</au><au>Alston, Mark</au><au>Monnahan, Patrick</au><au>Mandáková, Terezie</au><au>Bray, Sian</au><au>Paajanen, Pirita</au><au>Kolář, Filip</au><au>Yant, Levi</au><au>Purugganan, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novelty and Convergence in Adaptation to Whole Genome Duplication</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>38</volume><issue>9</issue><spage>3910</spage><epage>3924</epage><pages>3910-3924</pages><issn>1537-1719</issn><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Abstract Whole genome duplication (WGD) can promote adaptation but is disruptive to conserved processes, especially meiosis. Studies in Arabidopsis arenosa revealed a coordinated evolutionary response to WGD involving interacting proteins controlling meiotic crossovers, which are minimized in an autotetraploid (within-species polyploid) to avoid missegregation. Here, we test whether this surprising flexibility of a conserved essential process, meiosis, is recapitulated in an independent WGD system, Cardamine amara, 17 My diverged from A. arenosa. We assess meiotic stability and perform population-based scans for positive selection, contrasting the genomic response to WGD in C. amara with that of A. arenosa. We found in C. amara the strongest selection signals at genes with predicted functions thought important to adaptation to WGD: meiosis, chromosome remodeling, cell cycle, and ion transport. However, genomic responses to WGD in the two species differ: minimal ortholog-level convergence emerged, with none of the meiosis genes found in A. arenosa exhibiting strong signal in C. amara. This is consistent with our observations of lower meiotic stability and occasional clonal spreading in diploid C. amara, suggesting that nascent C. amara autotetraploid lineages were preadapted by their diploid lifestyle to survive while enduring reduced meiotic fidelity. However, in contrast to a lack of ortholog convergence, we see process-level and network convergence in DNA management, chromosome organization, stress signaling, and ion homeostasis processes. This gives the first insight into the salient adaptations required to meet the challenges of a WGD state and shows that autopolyploids can utilize multiple evolutionary trajectories to adapt to WGD.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33783509</pmid><doi>10.1093/molbev/msab096</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0561-3717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1537-1719
ispartof Molecular biology and evolution, 2021-09, Vol.38 (9), p.3910-3924
issn 1537-1719
0737-4038
1537-1719
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8382928
source NORA - Norwegian Open Research Archives; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry
subjects Arabidopsis - genetics
Arabidopsis thaliana
Biotechnology industry
Chromosome Segregation
Discoveries
Gene Duplication
Genome, Plant
Genomes
Genomics
Meiosis - genetics
Polyploidy
Proteins
title Novelty and Convergence in Adaptation to Whole Genome Duplication
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novelty%20and%20Convergence%20in%20Adaptation%20to%20Whole%20Genome%20Duplication&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Bohut%C3%ADnsk%C3%A1,%20Magdalena&rft.date=2021-09-01&rft.volume=38&rft.issue=9&rft.spage=3910&rft.epage=3924&rft.pages=3910-3924&rft.issn=1537-1719&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msab096&rft_dat=%3Cgale_pubme%3EA775440985%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-5005e7a463f4ecc7093318f6cdcf101c25d6779bc615f72057542f6821d142a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2507149859&rft_id=info:pmid/33783509&rft_galeid=A775440985&rft_oup_id=10.1093/molbev/msab096&rfr_iscdi=true