Loading…
Cell Fragment Formation, Migration, and Force Exertion on Extracellular Mimicking Fiber Nanonets
Cell fragments devoid of the nucleus play an essential role in intercellular communication. Mostly studied on flat 2D substrates, their origins and behavior in native fibrous environments remain unknown. Here, cytoplasmic fragments’ spontaneous formation and behavior in suspended extracellular matri...
Saved in:
Published in: | Advanced biology 2021-06, Vol.5 (6), p.e2000592-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4402-da974b110b720df18e134d5eadf2190f2bd28367789ca5d17d9cd1baa95994233 |
---|---|
cites | cdi_FETCH-LOGICAL-c4402-da974b110b720df18e134d5eadf2190f2bd28367789ca5d17d9cd1baa95994233 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | e2000592 |
container_title | Advanced biology |
container_volume | 5 |
creator | Padhi, Abinash Danielsson, Brooke E. Alabduljabbar, Deema S. Wang, Ji Conway, Daniel E. Kapania, Rakesh K. Nain, Amrinder S. |
description | Cell fragments devoid of the nucleus play an essential role in intercellular communication. Mostly studied on flat 2D substrates, their origins and behavior in native fibrous environments remain unknown. Here, cytoplasmic fragments’ spontaneous formation and behavior in suspended extracellular matrices mimicking fiber architectures (parallel, crosshatch, and hexagonal) are described. After cleaving from the parent cell body, the fragments of diverse shapes on fibers migrate faster compared to 2D. Furthermore, while fragments in 2D are mostly circular, a higher number of rectangular and blob‐like shapes are formed on fibers, and, interestingly, each shape is capable of forming protrusive structures. Absent in 2D, fibers’ fragments display oscillatory migratory behavior with dramatic shape changes, sometimes remarkably sustained over long durations (>20 h). Immunostaining reveals paxillin distribution along fragment body‐fiber length, while Forster Resonance Energy Transfer imaging of vinculin reveals mechanical loading of fragment adhesions comparable to whole cell adhesions. Using nanonet force microscopy, the forces exerted by fragments are estimated, and peculiarly small area fragments can exert forces similar to larger fragments in a Rho‐associated kinase dependent manner. Overall, fragment dynamics on 2D substrates are insufficient to describe the mechanosensitivity of fragments to fibers, and the architecture of fiber networks can generate entirely new behaviors.
Enucleated cell fragments are cytoplasmic bodies implicated in intercellular communication. On extracellular matrix mimicking fibrous environments, fragments exhibit morphological and migratory behaviors fundamentally different from those observed on flat 2D. Fragments display dramatic shape changes, including the formation of filamentous protrusions. Fragments can exert forces for hours and demonstrate peculiar contractility driven oscillatory migratory behavior on fibers. |
doi_str_mv | 10.1002/adbi.202000592 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8406798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504772710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4402-da974b110b720df18e134d5eadf2190f2bd28367789ca5d17d9cd1baa95994233</originalsourceid><addsrcrecordid>eNqFkU1PwzAMhiMEgmnsyhH1yIENJ21Jc0GCscGkARc4B7dJR6AfI-lg-_ek2hhwQrJkK378xtZLyBGFAQVgZ6hSM2DAACAWbId0GAfaByqS3V_1Aek59-oZFtOQUb5PDsKQxyIC1iHPQ10UwdjirNRVE4xrW2Jj6uo0uDMzuymxUm0n08FoqW37FvgYLRuLmR9fFGg9XprszVSzYGxSbYN7rOpKN-6Q7OVYON3b5C55Go8eh7f96cPNZHg57WeRX6SvUPAopRRSzkDlNNE0jFSsUeWMCshZqlgSnnOeiAxjRbkSmaIpooiFiFgYdsnFWne-SEutMn-NxULOrSnRrmSNRv7tVOZFzuoPmURwzkXiBU42ArZ-X2jXyNK49jysdL1wksUQcc44BY8O1mhma-eszrffUJCtM7J1Rm6d8QPHv5fb4t8-eECsgU9T6NU_cvLy-mryI_4FYr2bNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504772710</pqid></control><display><type>article</type><title>Cell Fragment Formation, Migration, and Force Exertion on Extracellular Mimicking Fiber Nanonets</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Padhi, Abinash ; Danielsson, Brooke E. ; Alabduljabbar, Deema S. ; Wang, Ji ; Conway, Daniel E. ; Kapania, Rakesh K. ; Nain, Amrinder S.</creator><creatorcontrib>Padhi, Abinash ; Danielsson, Brooke E. ; Alabduljabbar, Deema S. ; Wang, Ji ; Conway, Daniel E. ; Kapania, Rakesh K. ; Nain, Amrinder S.</creatorcontrib><description>Cell fragments devoid of the nucleus play an essential role in intercellular communication. Mostly studied on flat 2D substrates, their origins and behavior in native fibrous environments remain unknown. Here, cytoplasmic fragments’ spontaneous formation and behavior in suspended extracellular matrices mimicking fiber architectures (parallel, crosshatch, and hexagonal) are described. After cleaving from the parent cell body, the fragments of diverse shapes on fibers migrate faster compared to 2D. Furthermore, while fragments in 2D are mostly circular, a higher number of rectangular and blob‐like shapes are formed on fibers, and, interestingly, each shape is capable of forming protrusive structures. Absent in 2D, fibers’ fragments display oscillatory migratory behavior with dramatic shape changes, sometimes remarkably sustained over long durations (>20 h). Immunostaining reveals paxillin distribution along fragment body‐fiber length, while Forster Resonance Energy Transfer imaging of vinculin reveals mechanical loading of fragment adhesions comparable to whole cell adhesions. Using nanonet force microscopy, the forces exerted by fragments are estimated, and peculiarly small area fragments can exert forces similar to larger fragments in a Rho‐associated kinase dependent manner. Overall, fragment dynamics on 2D substrates are insufficient to describe the mechanosensitivity of fragments to fibers, and the architecture of fiber networks can generate entirely new behaviors.
Enucleated cell fragments are cytoplasmic bodies implicated in intercellular communication. On extracellular matrix mimicking fibrous environments, fragments exhibit morphological and migratory behaviors fundamentally different from those observed on flat 2D. Fragments display dramatic shape changes, including the formation of filamentous protrusions. Fragments can exert forces for hours and demonstrate peculiar contractility driven oscillatory migratory behavior on fibers.</description><identifier>ISSN: 2701-0198</identifier><identifier>EISSN: 2701-0198</identifier><identifier>DOI: 10.1002/adbi.202000592</identifier><identifier>PMID: 33759402</identifier><language>eng</language><subject>cell forces ; cell fragments ; ECM environments ; ECM fibers ; fragment forces ; microvesicles</subject><ispartof>Advanced biology, 2021-06, Vol.5 (6), p.e2000592-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4402-da974b110b720df18e134d5eadf2190f2bd28367789ca5d17d9cd1baa95994233</citedby><cites>FETCH-LOGICAL-c4402-da974b110b720df18e134d5eadf2190f2bd28367789ca5d17d9cd1baa95994233</cites><orcidid>0000-0002-9757-2341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33759402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Padhi, Abinash</creatorcontrib><creatorcontrib>Danielsson, Brooke E.</creatorcontrib><creatorcontrib>Alabduljabbar, Deema S.</creatorcontrib><creatorcontrib>Wang, Ji</creatorcontrib><creatorcontrib>Conway, Daniel E.</creatorcontrib><creatorcontrib>Kapania, Rakesh K.</creatorcontrib><creatorcontrib>Nain, Amrinder S.</creatorcontrib><title>Cell Fragment Formation, Migration, and Force Exertion on Extracellular Mimicking Fiber Nanonets</title><title>Advanced biology</title><addtitle>Adv Biol (Weinh)</addtitle><description>Cell fragments devoid of the nucleus play an essential role in intercellular communication. Mostly studied on flat 2D substrates, their origins and behavior in native fibrous environments remain unknown. Here, cytoplasmic fragments’ spontaneous formation and behavior in suspended extracellular matrices mimicking fiber architectures (parallel, crosshatch, and hexagonal) are described. After cleaving from the parent cell body, the fragments of diverse shapes on fibers migrate faster compared to 2D. Furthermore, while fragments in 2D are mostly circular, a higher number of rectangular and blob‐like shapes are formed on fibers, and, interestingly, each shape is capable of forming protrusive structures. Absent in 2D, fibers’ fragments display oscillatory migratory behavior with dramatic shape changes, sometimes remarkably sustained over long durations (>20 h). Immunostaining reveals paxillin distribution along fragment body‐fiber length, while Forster Resonance Energy Transfer imaging of vinculin reveals mechanical loading of fragment adhesions comparable to whole cell adhesions. Using nanonet force microscopy, the forces exerted by fragments are estimated, and peculiarly small area fragments can exert forces similar to larger fragments in a Rho‐associated kinase dependent manner. Overall, fragment dynamics on 2D substrates are insufficient to describe the mechanosensitivity of fragments to fibers, and the architecture of fiber networks can generate entirely new behaviors.
Enucleated cell fragments are cytoplasmic bodies implicated in intercellular communication. On extracellular matrix mimicking fibrous environments, fragments exhibit morphological and migratory behaviors fundamentally different from those observed on flat 2D. Fragments display dramatic shape changes, including the formation of filamentous protrusions. Fragments can exert forces for hours and demonstrate peculiar contractility driven oscillatory migratory behavior on fibers.</description><subject>cell forces</subject><subject>cell fragments</subject><subject>ECM environments</subject><subject>ECM fibers</subject><subject>fragment forces</subject><subject>microvesicles</subject><issn>2701-0198</issn><issn>2701-0198</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PwzAMhiMEgmnsyhH1yIENJ21Jc0GCscGkARc4B7dJR6AfI-lg-_ek2hhwQrJkK378xtZLyBGFAQVgZ6hSM2DAACAWbId0GAfaByqS3V_1Aek59-oZFtOQUb5PDsKQxyIC1iHPQ10UwdjirNRVE4xrW2Jj6uo0uDMzuymxUm0n08FoqW37FvgYLRuLmR9fFGg9XprszVSzYGxSbYN7rOpKN-6Q7OVYON3b5C55Go8eh7f96cPNZHg57WeRX6SvUPAopRRSzkDlNNE0jFSsUeWMCshZqlgSnnOeiAxjRbkSmaIpooiFiFgYdsnFWne-SEutMn-NxULOrSnRrmSNRv7tVOZFzuoPmURwzkXiBU42ArZ-X2jXyNK49jysdL1wksUQcc44BY8O1mhma-eszrffUJCtM7J1Rm6d8QPHv5fb4t8-eECsgU9T6NU_cvLy-mryI_4FYr2bNg</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Padhi, Abinash</creator><creator>Danielsson, Brooke E.</creator><creator>Alabduljabbar, Deema S.</creator><creator>Wang, Ji</creator><creator>Conway, Daniel E.</creator><creator>Kapania, Rakesh K.</creator><creator>Nain, Amrinder S.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9757-2341</orcidid></search><sort><creationdate>202106</creationdate><title>Cell Fragment Formation, Migration, and Force Exertion on Extracellular Mimicking Fiber Nanonets</title><author>Padhi, Abinash ; Danielsson, Brooke E. ; Alabduljabbar, Deema S. ; Wang, Ji ; Conway, Daniel E. ; Kapania, Rakesh K. ; Nain, Amrinder S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4402-da974b110b720df18e134d5eadf2190f2bd28367789ca5d17d9cd1baa95994233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>cell forces</topic><topic>cell fragments</topic><topic>ECM environments</topic><topic>ECM fibers</topic><topic>fragment forces</topic><topic>microvesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padhi, Abinash</creatorcontrib><creatorcontrib>Danielsson, Brooke E.</creatorcontrib><creatorcontrib>Alabduljabbar, Deema S.</creatorcontrib><creatorcontrib>Wang, Ji</creatorcontrib><creatorcontrib>Conway, Daniel E.</creatorcontrib><creatorcontrib>Kapania, Rakesh K.</creatorcontrib><creatorcontrib>Nain, Amrinder S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padhi, Abinash</au><au>Danielsson, Brooke E.</au><au>Alabduljabbar, Deema S.</au><au>Wang, Ji</au><au>Conway, Daniel E.</au><au>Kapania, Rakesh K.</au><au>Nain, Amrinder S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell Fragment Formation, Migration, and Force Exertion on Extracellular Mimicking Fiber Nanonets</atitle><jtitle>Advanced biology</jtitle><addtitle>Adv Biol (Weinh)</addtitle><date>2021-06</date><risdate>2021</risdate><volume>5</volume><issue>6</issue><spage>e2000592</spage><epage>n/a</epage><pages>e2000592-n/a</pages><issn>2701-0198</issn><eissn>2701-0198</eissn><abstract>Cell fragments devoid of the nucleus play an essential role in intercellular communication. Mostly studied on flat 2D substrates, their origins and behavior in native fibrous environments remain unknown. Here, cytoplasmic fragments’ spontaneous formation and behavior in suspended extracellular matrices mimicking fiber architectures (parallel, crosshatch, and hexagonal) are described. After cleaving from the parent cell body, the fragments of diverse shapes on fibers migrate faster compared to 2D. Furthermore, while fragments in 2D are mostly circular, a higher number of rectangular and blob‐like shapes are formed on fibers, and, interestingly, each shape is capable of forming protrusive structures. Absent in 2D, fibers’ fragments display oscillatory migratory behavior with dramatic shape changes, sometimes remarkably sustained over long durations (>20 h). Immunostaining reveals paxillin distribution along fragment body‐fiber length, while Forster Resonance Energy Transfer imaging of vinculin reveals mechanical loading of fragment adhesions comparable to whole cell adhesions. Using nanonet force microscopy, the forces exerted by fragments are estimated, and peculiarly small area fragments can exert forces similar to larger fragments in a Rho‐associated kinase dependent manner. Overall, fragment dynamics on 2D substrates are insufficient to describe the mechanosensitivity of fragments to fibers, and the architecture of fiber networks can generate entirely new behaviors.
Enucleated cell fragments are cytoplasmic bodies implicated in intercellular communication. On extracellular matrix mimicking fibrous environments, fragments exhibit morphological and migratory behaviors fundamentally different from those observed on flat 2D. Fragments display dramatic shape changes, including the formation of filamentous protrusions. Fragments can exert forces for hours and demonstrate peculiar contractility driven oscillatory migratory behavior on fibers.</abstract><pmid>33759402</pmid><doi>10.1002/adbi.202000592</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9757-2341</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2701-0198 |
ispartof | Advanced biology, 2021-06, Vol.5 (6), p.e2000592-n/a |
issn | 2701-0198 2701-0198 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8406798 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | cell forces cell fragments ECM environments ECM fibers fragment forces microvesicles |
title | Cell Fragment Formation, Migration, and Force Exertion on Extracellular Mimicking Fiber Nanonets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20Fragment%20Formation,%20Migration,%20and%20Force%20Exertion%20on%20Extracellular%20Mimicking%20Fiber%20Nanonets&rft.jtitle=Advanced%20biology&rft.au=Padhi,%20Abinash&rft.date=2021-06&rft.volume=5&rft.issue=6&rft.spage=e2000592&rft.epage=n/a&rft.pages=e2000592-n/a&rft.issn=2701-0198&rft.eissn=2701-0198&rft_id=info:doi/10.1002/adbi.202000592&rft_dat=%3Cproquest_pubme%3E2504772710%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4402-da974b110b720df18e134d5eadf2190f2bd28367789ca5d17d9cd1baa95994233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2504772710&rft_id=info:pmid/33759402&rfr_iscdi=true |