Loading…

Unsupervised domain adaptation based COVID-19 CT infection segmentation network

Automatic segmentation of infection areas in computed tomography (CT) images has proven to be an effective diagnostic approach for COVID-19. However, due to the limited number of pixel-level annotated medical images, accurate segmentation remains a major challenge. In this paper, we propose an unsup...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2022-04, Vol.52 (6), p.6340-6353
Main Authors: Chen, Han, Jiang, Yifan, Loew, Murray, Ko, Hanseok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Automatic segmentation of infection areas in computed tomography (CT) images has proven to be an effective diagnostic approach for COVID-19. However, due to the limited number of pixel-level annotated medical images, accurate segmentation remains a major challenge. In this paper, we propose an unsupervised domain adaptation based segmentation network to improve the segmentation performance of the infection areas in COVID-19 CT images. In particular, we propose to utilize the synthetic data and limited unlabeled real COVID-19 CT images to jointly train the segmentation network. Furthermore, we develop a novel domain adaptation module, which is used to align the two domains and effectively improve the segmentation network’s generalization capability to the real domain. Besides, we propose an unsupervised adversarial training scheme, which encourages the segmentation network to learn the domain-invariant feature, so that the robust feature can be used for segmentation. Experimental results demonstrate that our method can achieve state-of-the-art segmentation performance on COVID-19 CT images.
ISSN:0924-669X
1573-7497
1573-7497
DOI:10.1007/s10489-021-02691-x