Loading…
Predicted Anode Arc Attachment by LTE (Local Thermodynamic Equilibrium) and 2-T (Two-Temperature) Arc Models in a Cascaded-Anode DC Plasma Spray Torch
In DC plasma spray torches, anode erosion is a common concern. It mainly depends on the heat flux brought by the arc and on the dimensions and residence time of the arc attachment to a given location on the anode wall. The latter depend, to a great extent, on the attachment mode of the arc on the an...
Saved in:
Published in: | Journal of thermal spray technology 2022-01, Vol.31 (1-2), p.28-45 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In DC plasma spray torches, anode erosion is a common concern. It mainly depends on the heat flux brought by the arc and on the dimensions and residence time of the arc attachment to a given location on the anode wall. The latter depend, to a great extent, on the attachment mode of the arc on the anode wall. This paper compares the anode arc attachment modes predicted by an LTE (Local Thermodynamic Equilibrium) and 2-T (two-temperature) arc models that include the electrodes in the computational domain. It deals with a commercial cascaded-anode plasma torch operated at high current (500 A) and low gas flow rate (60 NLPM of argon). It shows that the LTE model predicted a constricted anode arc attachment that moves on the anode ring, while the 2-T model predicted a diffuse and steady arc attachment. The comparison between the predicted and measured arc voltage showed that the 2-T prediction is closer to the actual voltage. Also, the post-mortem observation of a new anode ring of the actual plasma torch operated under the same conditions for a short time confirmed a diffuse arc attachment on a new anode. |
---|---|
ISSN: | 1059-9630 1544-1016 1544-1016 |
DOI: | 10.1007/s11666-021-01253-4 |