Loading…
Photosynthetic Systems Suggest an Evolutionary Pathway to Diderms
Bacteria are divided primarily into monoderms (with one cell membrane, and usually Gram-positive, due to a thick peptidoglycan layer) and diderms (with two cell membranes, and mostly Gram-negative, due to a thin peptidoglycan layer sandwiched between the two membranes). Photosynthetic species are sp...
Saved in:
Published in: | Acta biotheoretica 2021-09, Vol.69 (3), p.343-358 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bacteria are divided primarily into monoderms (with one cell membrane, and usually Gram-positive, due to a thick peptidoglycan layer) and diderms (with two cell membranes, and mostly Gram-negative, due to a thin peptidoglycan layer sandwiched between the two membranes). Photosynthetic species are spread among the taxonomic groups, some having type I reaction centers (RCI in monoderm phylum Firmicutes; and diderm phyla Acidobacteria and Chlorobi), others with type II reaction centers (RCII in monoderm phylum Chloroflexi; and diderm taxa Gemmatimonadetes, and alpha-, beta-, and gamma-Proteobacteria), and some containing both (RCI and RCII, only in diderm phylum Cyanobacteria). In most bacterial phylograms, photosystem types and diderm taxa are polyphyletic. A more parsimonious arrangement, which is supported by photosystem evolution, as well as additional sets of molecular characters, suggests that endosymbiotic events resulted in the formation of the diderms. In the model presented, monoderms readily form a monophyletic group, while diderms are produced by at least two endosymbiotic events, followed by additional evolutionary changes. |
---|---|
ISSN: | 0001-5342 1572-8358 1572-8358 |
DOI: | 10.1007/s10441-020-09402-y |