Loading…
Nanoscale Engineering of Inorganic Composite Scintillation Materials
This review article considers the latest developments in the field of inorganic scintillation materials. Modern trends in the improvement of inorganic scintillation materials are based on engineering their features at the nanoscale level. The essential challenges to the fundamental steps of the tech...
Saved in:
Published in: | Materials 2021-08, Vol.14 (17), p.4889 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This review article considers the latest developments in the field of inorganic scintillation materials. Modern trends in the improvement of inorganic scintillation materials are based on engineering their features at the nanoscale level. The essential challenges to the fundamental steps of the technology of inorganic glass, glass ceramics, and ceramic scintillation materials are discussed. The advantage of co-precipitation over the solid-state synthesis of the raw material compositions, particularly those which include high vapor components is described. Methods to improve the scintillation parameters of the glass to the level of single crystals are considered. The move to crystalline systems with the compositional disorder to improve their scintillation properties is justified both theoretically and practically. A benefit of the implementation of the discussed matters into the technology of well-known glass and crystalline scintillation materials is demonstrated. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma14174889 |