Loading…
Discovery of potential biomarkers for human atherosclerotic abdominal aortic aneurysm through untargeted metabolomics and transcriptomics
Abdominal aortic aneurysm (AAA) and atherosclerosis (AS) have considerable similarities in clinical risk factors and molecular pathogenesis. The aim of our study was to investigate the differences between AAA and AS from the perspective of metabolomics, and to explore the potential mechanisms of dif...
Saved in:
Published in: | Journal of Zhejiang University. B. Science 2021-09, Vol.22 (9), p.733-745 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c489t-e4a4f545d323f4ff568b85a09012a7ea5bd26981172fe4fe8e86f57f1448a713 |
---|---|
cites | cdi_FETCH-LOGICAL-c489t-e4a4f545d323f4ff568b85a09012a7ea5bd26981172fe4fe8e86f57f1448a713 |
container_end_page | 745 |
container_issue | 9 |
container_start_page | 733 |
container_title | Journal of Zhejiang University. B. Science |
container_volume | 22 |
creator | Ji, Lei Chen, Siliang Gu, Guangchao Wang, Wei Ren, Jinrui Xu, Fang Li, Fangda Wu, Jianqiang Yang, Dan Zheng, Yuehong |
description | Abdominal aortic aneurysm (AAA) and atherosclerosis (AS) have considerable similarities in clinical risk factors and molecular pathogenesis. The aim of our study was to investigate the differences between AAA and AS from the perspective of metabolomics, and to explore the potential mechanisms of differential metabolites via integration analysis with transcriptomics. Plasma samples from 32 AAA and 32 AS patients were applied to characterize the metabolite profiles using untargeted liquid chromatography-mass spectrometry (LC-MS). A total of 18 remarkably different metabolites were identified, and a combination of seven metabolites could potentially serve as a biomarker to distinguish AAA and AS, with an area under the curve (AUC) of 0.93. Subsequently, we analyzed both the metabolomics and transcriptomics data and found that seven metabolites, especially 2′-deoxy-
d
-ribose (2dDR), were significantly correlated with differentially expressed genes. In conclusion, our study presents a comprehensive landscape of plasma metabolites in AAA and AS patients, and provides a research direction for pathogenetic mechanisms in atherosclerotic AAA. |
doi_str_mv | 10.1631/jzus.B2000713 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8435341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zjdxxbb_e202109003</wanfj_id><sourcerecordid>zjdxxbb_e202109003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-e4a4f545d323f4ff568b85a09012a7ea5bd26981172fe4fe8e86f57f1448a713</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEoqVw5IoscUFI2foz9l6QSoEWqRKX3i0nGSdZEnuxndLtP-Bf491tF6i42Nb48Tszr6coXhO8IBUjp6u7OS4-UoyxJOxJcUxURUsiFXuaz5VkJRGKHBUvYlxhzDmW1fPiiHFBuBTsuPj1aYiNv4GwQd6itU_g0mBGVA9-MuE7hIisD6ifJ-OQST0EH5sxr2lokKlbPw0u48aHXcDBHDZxQqkPfu56NLtkQgcJWjRBMrUf84MmZrBFKRgXmzCs0y72snhmzRjh1f1-Ulx_-Xx9fllefbv4en52VTZcLVMJ3HAruGgZZZZbKypVK2HwEhNqJBhRt7RaKkIktcAtKFCVFdISzpXJFp0UH_ay67meoG1yv8GMeh2G3O9GezPof2_c0OvO32jFmWB8K_B-L_DTOGtcp1d-DtmDqO9W7e1tXWugmJJcEGYZfnefLfgfM8Skp-w3jGN2ys9RUyEpJYzyLfr2EXoQzhTHVMld-eWeavJHxAD2UDnBejsQejsQ-mEgMv_m73YP9MMEZGCxB2K-ch2EP2n_r_gb5ifFyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574028771</pqid></control><display><type>article</type><title>Discovery of potential biomarkers for human atherosclerotic abdominal aortic aneurysm through untargeted metabolomics and transcriptomics</title><source>Springer Nature</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ji, Lei ; Chen, Siliang ; Gu, Guangchao ; Wang, Wei ; Ren, Jinrui ; Xu, Fang ; Li, Fangda ; Wu, Jianqiang ; Yang, Dan ; Zheng, Yuehong</creator><creatorcontrib>Ji, Lei ; Chen, Siliang ; Gu, Guangchao ; Wang, Wei ; Ren, Jinrui ; Xu, Fang ; Li, Fangda ; Wu, Jianqiang ; Yang, Dan ; Zheng, Yuehong</creatorcontrib><description>Abdominal aortic aneurysm (AAA) and atherosclerosis (AS) have considerable similarities in clinical risk factors and molecular pathogenesis. The aim of our study was to investigate the differences between AAA and AS from the perspective of metabolomics, and to explore the potential mechanisms of differential metabolites via integration analysis with transcriptomics. Plasma samples from 32 AAA and 32 AS patients were applied to characterize the metabolite profiles using untargeted liquid chromatography-mass spectrometry (LC-MS). A total of 18 remarkably different metabolites were identified, and a combination of seven metabolites could potentially serve as a biomarker to distinguish AAA and AS, with an area under the curve (AUC) of 0.93. Subsequently, we analyzed both the metabolomics and transcriptomics data and found that seven metabolites, especially 2′-deoxy-
d
-ribose (2dDR), were significantly correlated with differentially expressed genes. In conclusion, our study presents a comprehensive landscape of plasma metabolites in AAA and AS patients, and provides a research direction for pathogenetic mechanisms in atherosclerotic AAA.</description><identifier>ISSN: 1673-1581</identifier><identifier>EISSN: 1862-1783</identifier><identifier>DOI: 10.1631/jzus.B2000713</identifier><identifier>PMID: 34514753</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Aged ; Aorta ; Aortic Aneurysm, Abdominal - metabolism ; Aortic aneurysms ; Arteriosclerosis ; Atherosclerosis ; Atherosclerosis - metabolism ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; D-Ribose ; Female ; Gene Expression Profiling - methods ; Humans ; Liquid chromatography ; Male ; Mass spectrometry ; Mass spectroscopy ; Metabolites ; Metabolomics ; Metabolomics - methods ; Middle Aged ; Pathogenesis ; Patients ; Research Article ; Ribose ; Risk analysis ; Risk factors</subject><ispartof>Journal of Zhejiang University. B. Science, 2021-09, Vol.22 (9), p.733-745</ispartof><rights>Zhejiang University Press 2021</rights><rights>Zhejiang University Press 2021.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-e4a4f545d323f4ff568b85a09012a7ea5bd26981172fe4fe8e86f57f1448a713</citedby><cites>FETCH-LOGICAL-c489t-e4a4f545d323f4ff568b85a09012a7ea5bd26981172fe4fe8e86f57f1448a713</cites><orcidid>0000-0002-0704-5469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zjdxxbb-e/zjdxxbb-e.jpg</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435341/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435341/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34514753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Lei</creatorcontrib><creatorcontrib>Chen, Siliang</creatorcontrib><creatorcontrib>Gu, Guangchao</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Ren, Jinrui</creatorcontrib><creatorcontrib>Xu, Fang</creatorcontrib><creatorcontrib>Li, Fangda</creatorcontrib><creatorcontrib>Wu, Jianqiang</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Zheng, Yuehong</creatorcontrib><title>Discovery of potential biomarkers for human atherosclerotic abdominal aortic aneurysm through untargeted metabolomics and transcriptomics</title><title>Journal of Zhejiang University. B. Science</title><addtitle>J. Zhejiang Univ. Sci. B</addtitle><addtitle>J Zhejiang Univ Sci B</addtitle><description>Abdominal aortic aneurysm (AAA) and atherosclerosis (AS) have considerable similarities in clinical risk factors and molecular pathogenesis. The aim of our study was to investigate the differences between AAA and AS from the perspective of metabolomics, and to explore the potential mechanisms of differential metabolites via integration analysis with transcriptomics. Plasma samples from 32 AAA and 32 AS patients were applied to characterize the metabolite profiles using untargeted liquid chromatography-mass spectrometry (LC-MS). A total of 18 remarkably different metabolites were identified, and a combination of seven metabolites could potentially serve as a biomarker to distinguish AAA and AS, with an area under the curve (AUC) of 0.93. Subsequently, we analyzed both the metabolomics and transcriptomics data and found that seven metabolites, especially 2′-deoxy-
d
-ribose (2dDR), were significantly correlated with differentially expressed genes. In conclusion, our study presents a comprehensive landscape of plasma metabolites in AAA and AS patients, and provides a research direction for pathogenetic mechanisms in atherosclerotic AAA.</description><subject>Aged</subject><subject>Aorta</subject><subject>Aortic Aneurysm, Abdominal - metabolism</subject><subject>Aortic aneurysms</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - metabolism</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>D-Ribose</subject><subject>Female</subject><subject>Gene Expression Profiling - methods</subject><subject>Humans</subject><subject>Liquid chromatography</subject><subject>Male</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Metabolomics - methods</subject><subject>Middle Aged</subject><subject>Pathogenesis</subject><subject>Patients</subject><subject>Research Article</subject><subject>Ribose</subject><subject>Risk analysis</subject><subject>Risk factors</subject><issn>1673-1581</issn><issn>1862-1783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkk1v1DAQhiMEoqVw5IoscUFI2foz9l6QSoEWqRKX3i0nGSdZEnuxndLtP-Bf491tF6i42Nb48Tszr6coXhO8IBUjp6u7OS4-UoyxJOxJcUxURUsiFXuaz5VkJRGKHBUvYlxhzDmW1fPiiHFBuBTsuPj1aYiNv4GwQd6itU_g0mBGVA9-MuE7hIisD6ifJ-OQST0EH5sxr2lokKlbPw0u48aHXcDBHDZxQqkPfu56NLtkQgcJWjRBMrUf84MmZrBFKRgXmzCs0y72snhmzRjh1f1-Ulx_-Xx9fllefbv4en52VTZcLVMJ3HAruGgZZZZbKypVK2HwEhNqJBhRt7RaKkIktcAtKFCVFdISzpXJFp0UH_ay67meoG1yv8GMeh2G3O9GezPof2_c0OvO32jFmWB8K_B-L_DTOGtcp1d-DtmDqO9W7e1tXWugmJJcEGYZfnefLfgfM8Skp-w3jGN2ys9RUyEpJYzyLfr2EXoQzhTHVMld-eWeavJHxAD2UDnBejsQejsQ-mEgMv_m73YP9MMEZGCxB2K-ch2EP2n_r_gb5ifFyw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ji, Lei</creator><creator>Chen, Siliang</creator><creator>Gu, Guangchao</creator><creator>Wang, Wei</creator><creator>Ren, Jinrui</creator><creator>Xu, Fang</creator><creator>Li, Fangda</creator><creator>Wu, Jianqiang</creator><creator>Yang, Dan</creator><creator>Zheng, Yuehong</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><general>Department of Vascular Surgery,Peking Union Medical College Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100730,China%School of Clinical Medicine,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100005,China%Medical Research Center,Peking Union Medical College Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100730,China%Department of Computational Biology and Bioinformatics,Institute of Medicinal Plant Development,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100193,China</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0704-5469</orcidid></search><sort><creationdate>20210901</creationdate><title>Discovery of potential biomarkers for human atherosclerotic abdominal aortic aneurysm through untargeted metabolomics and transcriptomics</title><author>Ji, Lei ; Chen, Siliang ; Gu, Guangchao ; Wang, Wei ; Ren, Jinrui ; Xu, Fang ; Li, Fangda ; Wu, Jianqiang ; Yang, Dan ; Zheng, Yuehong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-e4a4f545d323f4ff568b85a09012a7ea5bd26981172fe4fe8e86f57f1448a713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aged</topic><topic>Aorta</topic><topic>Aortic Aneurysm, Abdominal - metabolism</topic><topic>Aortic aneurysms</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - metabolism</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>D-Ribose</topic><topic>Female</topic><topic>Gene Expression Profiling - methods</topic><topic>Humans</topic><topic>Liquid chromatography</topic><topic>Male</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Metabolomics - methods</topic><topic>Middle Aged</topic><topic>Pathogenesis</topic><topic>Patients</topic><topic>Research Article</topic><topic>Ribose</topic><topic>Risk analysis</topic><topic>Risk factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Lei</creatorcontrib><creatorcontrib>Chen, Siliang</creatorcontrib><creatorcontrib>Gu, Guangchao</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Ren, Jinrui</creatorcontrib><creatorcontrib>Xu, Fang</creatorcontrib><creatorcontrib>Li, Fangda</creatorcontrib><creatorcontrib>Wu, Jianqiang</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Zheng, Yuehong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Zhejiang University. B. Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Lei</au><au>Chen, Siliang</au><au>Gu, Guangchao</au><au>Wang, Wei</au><au>Ren, Jinrui</au><au>Xu, Fang</au><au>Li, Fangda</au><au>Wu, Jianqiang</au><au>Yang, Dan</au><au>Zheng, Yuehong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of potential biomarkers for human atherosclerotic abdominal aortic aneurysm through untargeted metabolomics and transcriptomics</atitle><jtitle>Journal of Zhejiang University. B. Science</jtitle><stitle>J. Zhejiang Univ. Sci. B</stitle><addtitle>J Zhejiang Univ Sci B</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>22</volume><issue>9</issue><spage>733</spage><epage>745</epage><pages>733-745</pages><issn>1673-1581</issn><eissn>1862-1783</eissn><abstract>Abdominal aortic aneurysm (AAA) and atherosclerosis (AS) have considerable similarities in clinical risk factors and molecular pathogenesis. The aim of our study was to investigate the differences between AAA and AS from the perspective of metabolomics, and to explore the potential mechanisms of differential metabolites via integration analysis with transcriptomics. Plasma samples from 32 AAA and 32 AS patients were applied to characterize the metabolite profiles using untargeted liquid chromatography-mass spectrometry (LC-MS). A total of 18 remarkably different metabolites were identified, and a combination of seven metabolites could potentially serve as a biomarker to distinguish AAA and AS, with an area under the curve (AUC) of 0.93. Subsequently, we analyzed both the metabolomics and transcriptomics data and found that seven metabolites, especially 2′-deoxy-
d
-ribose (2dDR), were significantly correlated with differentially expressed genes. In conclusion, our study presents a comprehensive landscape of plasma metabolites in AAA and AS patients, and provides a research direction for pathogenetic mechanisms in atherosclerotic AAA.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><pmid>34514753</pmid><doi>10.1631/jzus.B2000713</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0704-5469</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1673-1581 |
ispartof | Journal of Zhejiang University. B. Science, 2021-09, Vol.22 (9), p.733-745 |
issn | 1673-1581 1862-1783 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8435341 |
source | Springer Nature; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aged Aorta Aortic Aneurysm, Abdominal - metabolism Aortic aneurysms Arteriosclerosis Atherosclerosis Atherosclerosis - metabolism Biomarkers Biomedical and Life Sciences Biomedicine D-Ribose Female Gene Expression Profiling - methods Humans Liquid chromatography Male Mass spectrometry Mass spectroscopy Metabolites Metabolomics Metabolomics - methods Middle Aged Pathogenesis Patients Research Article Ribose Risk analysis Risk factors |
title | Discovery of potential biomarkers for human atherosclerotic abdominal aortic aneurysm through untargeted metabolomics and transcriptomics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20potential%20biomarkers%20for%20human%20atherosclerotic%20abdominal%20aortic%20aneurysm%20through%20untargeted%20metabolomics%20and%20transcriptomics&rft.jtitle=Journal%20of%20Zhejiang%20University.%20B.%20Science&rft.au=Ji,%20Lei&rft.date=2021-09-01&rft.volume=22&rft.issue=9&rft.spage=733&rft.epage=745&rft.pages=733-745&rft.issn=1673-1581&rft.eissn=1862-1783&rft_id=info:doi/10.1631/jzus.B2000713&rft_dat=%3Cwanfang_jour_pubme%3Ezjdxxbb_e202109003%3C/wanfang_jour_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-e4a4f545d323f4ff568b85a09012a7ea5bd26981172fe4fe8e86f57f1448a713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2574028771&rft_id=info:pmid/34514753&rft_wanfj_id=zjdxxbb_e202109003&rfr_iscdi=true |