Loading…
Physiologic osteoclasts are not sufficient to induce skeletal pain in mice
Background Increased bone resorption is driven by augmented osteoclast activity in pathological states of the bone, including osteoporosis, fracture and metastatic bone cancer. Pain is a frequent co‐morbidity in bone pathologies and adequate pain management is necessary for symptomatic relief. Bone...
Saved in:
Published in: | European journal of pain 2021-01, Vol.25 (1), p.199-212 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Increased bone resorption is driven by augmented osteoclast activity in pathological states of the bone, including osteoporosis, fracture and metastatic bone cancer. Pain is a frequent co‐morbidity in bone pathologies and adequate pain management is necessary for symptomatic relief. Bone cancer is associated with severe skeletal pain and dysregulated bone remodelling, while increased osteoclast activity and bone pain are also observed in osteoporosis and during fracture repair. However, the effects of altered osteoclast activity and bone resorption on nociceptive processing of bone afferents remain unclear.
Methods
This study investigates whether physiologic osteoclasts and resulting changes in bone resorption can induce skeletal pain. We first assessed correlation between changes in bone microarchitecture (through µCT) and skeletal pain using standardized behavioural phenotyping assays in a mouse model of metastatic bone cancer. We then investigated whether increased activity of physiologic osteoclasts, and the associated bone resorption, is sufficient to induce skeletal pain using mouse models of localized and widespread bone resorption following administration of exogenous receptor activator of nuclear factor kappa‐B ligand (RANKL).
Results
Our data demonstrates that mice with bone cancer exhibit progressive pain behaviours that correlate with increased bone resorption at the tumour site. Systemic RANKL injections enhance osteoclast activity and associated bone resorption, without producing any changes in motor function or pain behaviours at both early and late timepoints.
Conclusion
These findings suggest that activation of homeostatic osteoclasts alone is not sufficient to induce skeletal pain in mice.
Significance statement
The role of osteoclasts in peripheral sensitization of sensory neurones is not fully understood. This study reports on the direct link between oestrogen‐independent osteoclast activation and skeletal pain. Administration of exogenous receptor activator of nuclear factor kappa‐B ligand (RANKL) increases bone resorption, but does not produce pro‐nociceptive changes in behavioural pain thresholds. Our data demonstrates that physiologic osteoclasts are not essential for skeletal pain behaviours. |
---|---|
ISSN: | 1090-3801 1532-2149 |
DOI: | 10.1002/ejp.1662 |