Loading…
Disease-Relevant Single Cell Photonic Signatures Identify S100β Stem Cells and their Myogenic Progeny in Vascular Lesions
A hallmark of subclinical atherosclerosis is the accumulation of vascular smooth muscle cell (SMC)-like cells leading to intimal thickening and lesion formation. While medial SMCs contribute to vascular lesions, the involvement of resident vascular stem cells (vSCs) remains unclear. We evaluated sin...
Saved in:
Published in: | Stem cell reviews and reports 2021-10, Vol.17 (5), p.1713-1740 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-6bf741222757935fb4f92ff1a8f09211453ec58c0b48559735296636359b2b3f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-6bf741222757935fb4f92ff1a8f09211453ec58c0b48559735296636359b2b3f3 |
container_end_page | 1740 |
container_issue | 5 |
container_start_page | 1713 |
container_title | Stem cell reviews and reports |
container_volume | 17 |
creator | Molony, Claire King, Damien Di Luca, Mariana Kitching, Michael Olayinka, Abidemi Hakimjavadi, Roya Julius, Lourdes A. N. Fitzpatrick, Emma Gusti, Yusof Burtenshaw, Denise Healy, Killian Finlay, Emma K. Kernan, David Llobera, Andreu Liu, Weimin Morrow, David Redmond, Eileen M. Ducrée, Jens Cahill, Paul A. |
description | A hallmark of subclinical atherosclerosis is the accumulation of vascular smooth muscle cell (SMC)-like cells leading to intimal thickening and lesion formation. While medial SMCs contribute to vascular lesions, the involvement of resident vascular stem cells (vSCs) remains unclear. We evaluated single cell photonics as a discriminator of cell phenotype in vitro before the presence of vSC within vascular lesions was assessed ex vivo using supervised machine learning and further validated using lineage tracing analysis
.
Using a novel lab-on-a-Disk(Load) platform, label-free single cell photonic emissions from normal and injured vessels ex vivo were interrogated and compared to freshly isolated aortic SMCs, cultured Movas SMCs, macrophages, B-cells, S100β
+
mVSc, bone marrow derived mesenchymal stem cells (MSC) and their respective myogenic progeny across five broadband light wavelengths (λ465 - λ670 ± 20 nm). We found that profiles were of sufficient coverage, specificity, and quality to clearly distinguish medial SMCs from different vascular beds (carotid vs aorta), discriminate normal carotid medial SMCs from lesional SMC-like cells ex vivo following flow restriction
,
and identify SMC differentiation of a series of multipotent stem cells following treatment with transforming growth factor beta 1 (TGF- β1), the Notch ligand Jagged1, and Sonic Hedgehog using multivariate analysis, in part, due to photonic emissions from enhanced collagen III and elastin expression. Supervised machine learning supported genetic lineage tracing analysis of S100β
+
vSCs and identified the presence of S100β
+
vSC-derived myogenic progeny within vascular lesions. We conclude disease-relevant photonic signatures may have predictive value for vascular disease.
Graphical abstract |
doi_str_mv | 10.1007/s12015-021-10125-x |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8446106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502807721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6bf741222757935fb4f92ff1a8f09211453ec58c0b48559735296636359b2b3f3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEolXpC3BAlrhwCbXHdpxckNCWP5UWUbHA1XKy46yrrF3spOryWDwIz1Rvt2wLB04eeX7fNzP6iuI5o68ZpeokMaBMlhRYySgDWV4_Kg6hgqbkoNTjfV01B8VxSheUUuBUZM3T4oBzxWnmDoufpy6hSVh-wQGvjB_Jwvl-QDLDYSDnqzAG77r82XszThETOVuiH53dkEXe4_cvshhxfUsnYvySjCt0kXzahB63wvO4LTbEefLdpG4aTCRzTC749Kx4Ys2Q8PjuPSq-vX_3dfaxnH_-cDZ7Oy87ocRYVq1VggGAkqrh0rbCNmAtM7WlDTAmJMdO1h1tRS1lo7iEpqp4xWXTQsstPyre7Hwvp3aNyy6vH82gL6Nbm7jRwTj9d8e7le7Dla6FqBitssGrO4MYfkyYRr12qcsXG49hShokhZoqBSyjL_9BL8IUfT4vU7UStYIGMgU7qoshpYh2vwyjepuu3qWrc7r6Nl19nUUvHp6xl_zJMgN8B6Tc8j3G-9n_sb0BxdewTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2587487292</pqid></control><display><type>article</type><title>Disease-Relevant Single Cell Photonic Signatures Identify S100β Stem Cells and their Myogenic Progeny in Vascular Lesions</title><source>Springer Link</source><creator>Molony, Claire ; King, Damien ; Di Luca, Mariana ; Kitching, Michael ; Olayinka, Abidemi ; Hakimjavadi, Roya ; Julius, Lourdes A. N. ; Fitzpatrick, Emma ; Gusti, Yusof ; Burtenshaw, Denise ; Healy, Killian ; Finlay, Emma K. ; Kernan, David ; Llobera, Andreu ; Liu, Weimin ; Morrow, David ; Redmond, Eileen M. ; Ducrée, Jens ; Cahill, Paul A.</creator><creatorcontrib>Molony, Claire ; King, Damien ; Di Luca, Mariana ; Kitching, Michael ; Olayinka, Abidemi ; Hakimjavadi, Roya ; Julius, Lourdes A. N. ; Fitzpatrick, Emma ; Gusti, Yusof ; Burtenshaw, Denise ; Healy, Killian ; Finlay, Emma K. ; Kernan, David ; Llobera, Andreu ; Liu, Weimin ; Morrow, David ; Redmond, Eileen M. ; Ducrée, Jens ; Cahill, Paul A.</creatorcontrib><description>A hallmark of subclinical atherosclerosis is the accumulation of vascular smooth muscle cell (SMC)-like cells leading to intimal thickening and lesion formation. While medial SMCs contribute to vascular lesions, the involvement of resident vascular stem cells (vSCs) remains unclear. We evaluated single cell photonics as a discriminator of cell phenotype in vitro before the presence of vSC within vascular lesions was assessed ex vivo using supervised machine learning and further validated using lineage tracing analysis
.
Using a novel lab-on-a-Disk(Load) platform, label-free single cell photonic emissions from normal and injured vessels ex vivo were interrogated and compared to freshly isolated aortic SMCs, cultured Movas SMCs, macrophages, B-cells, S100β
+
mVSc, bone marrow derived mesenchymal stem cells (MSC) and their respective myogenic progeny across five broadband light wavelengths (λ465 - λ670 ± 20 nm). We found that profiles were of sufficient coverage, specificity, and quality to clearly distinguish medial SMCs from different vascular beds (carotid vs aorta), discriminate normal carotid medial SMCs from lesional SMC-like cells ex vivo following flow restriction
,
and identify SMC differentiation of a series of multipotent stem cells following treatment with transforming growth factor beta 1 (TGF- β1), the Notch ligand Jagged1, and Sonic Hedgehog using multivariate analysis, in part, due to photonic emissions from enhanced collagen III and elastin expression. Supervised machine learning supported genetic lineage tracing analysis of S100β
+
vSCs and identified the presence of S100β
+
vSC-derived myogenic progeny within vascular lesions. We conclude disease-relevant photonic signatures may have predictive value for vascular disease.
Graphical abstract</description><identifier>ISSN: 2629-3269</identifier><identifier>EISSN: 2629-3277</identifier><identifier>DOI: 10.1007/s12015-021-10125-x</identifier><identifier>PMID: 33730327</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aorta ; Arteriosclerosis ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Bone marrow ; Cell Biology ; Collagen (type III) ; Elastin ; Genetic analysis ; Hedgehog Proteins ; Jagged1 protein ; Learning algorithms ; Lesions ; Life Sciences ; Lymphocytes B ; Machine learning ; Macrophages ; Mesenchyme ; Multivariate analysis ; Muscle, Smooth, Vascular - cytology ; Muscle, Smooth, Vascular - metabolism ; Muscle, Smooth, Vascular - pathology ; Optics and Photonics ; Phenotypes ; Regenerative Medicine/Tissue Engineering ; S100 Calcium Binding Protein beta Subunit - metabolism ; Smooth muscle ; Stem Cells ; Stem Cells - metabolism ; Transforming growth factor-b1 ; Vascular diseases</subject><ispartof>Stem cell reviews and reports, 2021-10, Vol.17 (5), p.1713-1740</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6bf741222757935fb4f92ff1a8f09211453ec58c0b48559735296636359b2b3f3</citedby><cites>FETCH-LOGICAL-c474t-6bf741222757935fb4f92ff1a8f09211453ec58c0b48559735296636359b2b3f3</cites><orcidid>0000-0002-5385-6502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33730327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Molony, Claire</creatorcontrib><creatorcontrib>King, Damien</creatorcontrib><creatorcontrib>Di Luca, Mariana</creatorcontrib><creatorcontrib>Kitching, Michael</creatorcontrib><creatorcontrib>Olayinka, Abidemi</creatorcontrib><creatorcontrib>Hakimjavadi, Roya</creatorcontrib><creatorcontrib>Julius, Lourdes A. N.</creatorcontrib><creatorcontrib>Fitzpatrick, Emma</creatorcontrib><creatorcontrib>Gusti, Yusof</creatorcontrib><creatorcontrib>Burtenshaw, Denise</creatorcontrib><creatorcontrib>Healy, Killian</creatorcontrib><creatorcontrib>Finlay, Emma K.</creatorcontrib><creatorcontrib>Kernan, David</creatorcontrib><creatorcontrib>Llobera, Andreu</creatorcontrib><creatorcontrib>Liu, Weimin</creatorcontrib><creatorcontrib>Morrow, David</creatorcontrib><creatorcontrib>Redmond, Eileen M.</creatorcontrib><creatorcontrib>Ducrée, Jens</creatorcontrib><creatorcontrib>Cahill, Paul A.</creatorcontrib><title>Disease-Relevant Single Cell Photonic Signatures Identify S100β Stem Cells and their Myogenic Progeny in Vascular Lesions</title><title>Stem cell reviews and reports</title><addtitle>Stem Cell Rev and Rep</addtitle><addtitle>Stem Cell Rev Rep</addtitle><description>A hallmark of subclinical atherosclerosis is the accumulation of vascular smooth muscle cell (SMC)-like cells leading to intimal thickening and lesion formation. While medial SMCs contribute to vascular lesions, the involvement of resident vascular stem cells (vSCs) remains unclear. We evaluated single cell photonics as a discriminator of cell phenotype in vitro before the presence of vSC within vascular lesions was assessed ex vivo using supervised machine learning and further validated using lineage tracing analysis
.
Using a novel lab-on-a-Disk(Load) platform, label-free single cell photonic emissions from normal and injured vessels ex vivo were interrogated and compared to freshly isolated aortic SMCs, cultured Movas SMCs, macrophages, B-cells, S100β
+
mVSc, bone marrow derived mesenchymal stem cells (MSC) and their respective myogenic progeny across five broadband light wavelengths (λ465 - λ670 ± 20 nm). We found that profiles were of sufficient coverage, specificity, and quality to clearly distinguish medial SMCs from different vascular beds (carotid vs aorta), discriminate normal carotid medial SMCs from lesional SMC-like cells ex vivo following flow restriction
,
and identify SMC differentiation of a series of multipotent stem cells following treatment with transforming growth factor beta 1 (TGF- β1), the Notch ligand Jagged1, and Sonic Hedgehog using multivariate analysis, in part, due to photonic emissions from enhanced collagen III and elastin expression. Supervised machine learning supported genetic lineage tracing analysis of S100β
+
vSCs and identified the presence of S100β
+
vSC-derived myogenic progeny within vascular lesions. We conclude disease-relevant photonic signatures may have predictive value for vascular disease.
Graphical abstract</description><subject>Aorta</subject><subject>Arteriosclerosis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Bone marrow</subject><subject>Cell Biology</subject><subject>Collagen (type III)</subject><subject>Elastin</subject><subject>Genetic analysis</subject><subject>Hedgehog Proteins</subject><subject>Jagged1 protein</subject><subject>Learning algorithms</subject><subject>Lesions</subject><subject>Life Sciences</subject><subject>Lymphocytes B</subject><subject>Machine learning</subject><subject>Macrophages</subject><subject>Mesenchyme</subject><subject>Multivariate analysis</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>Optics and Photonics</subject><subject>Phenotypes</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>S100 Calcium Binding Protein beta Subunit - metabolism</subject><subject>Smooth muscle</subject><subject>Stem Cells</subject><subject>Stem Cells - metabolism</subject><subject>Transforming growth factor-b1</subject><subject>Vascular diseases</subject><issn>2629-3269</issn><issn>2629-3277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxiMEolXpC3BAlrhwCbXHdpxckNCWP5UWUbHA1XKy46yrrF3spOryWDwIz1Rvt2wLB04eeX7fNzP6iuI5o68ZpeokMaBMlhRYySgDWV4_Kg6hgqbkoNTjfV01B8VxSheUUuBUZM3T4oBzxWnmDoufpy6hSVh-wQGvjB_Jwvl-QDLDYSDnqzAG77r82XszThETOVuiH53dkEXe4_cvshhxfUsnYvySjCt0kXzahB63wvO4LTbEefLdpG4aTCRzTC749Kx4Ys2Q8PjuPSq-vX_3dfaxnH_-cDZ7Oy87ocRYVq1VggGAkqrh0rbCNmAtM7WlDTAmJMdO1h1tRS1lo7iEpqp4xWXTQsstPyre7Hwvp3aNyy6vH82gL6Nbm7jRwTj9d8e7le7Dla6FqBitssGrO4MYfkyYRr12qcsXG49hShokhZoqBSyjL_9BL8IUfT4vU7UStYIGMgU7qoshpYh2vwyjepuu3qWrc7r6Nl19nUUvHp6xl_zJMgN8B6Tc8j3G-9n_sb0BxdewTg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Molony, Claire</creator><creator>King, Damien</creator><creator>Di Luca, Mariana</creator><creator>Kitching, Michael</creator><creator>Olayinka, Abidemi</creator><creator>Hakimjavadi, Roya</creator><creator>Julius, Lourdes A. N.</creator><creator>Fitzpatrick, Emma</creator><creator>Gusti, Yusof</creator><creator>Burtenshaw, Denise</creator><creator>Healy, Killian</creator><creator>Finlay, Emma K.</creator><creator>Kernan, David</creator><creator>Llobera, Andreu</creator><creator>Liu, Weimin</creator><creator>Morrow, David</creator><creator>Redmond, Eileen M.</creator><creator>Ducrée, Jens</creator><creator>Cahill, Paul A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5385-6502</orcidid></search><sort><creationdate>20211001</creationdate><title>Disease-Relevant Single Cell Photonic Signatures Identify S100β Stem Cells and their Myogenic Progeny in Vascular Lesions</title><author>Molony, Claire ; King, Damien ; Di Luca, Mariana ; Kitching, Michael ; Olayinka, Abidemi ; Hakimjavadi, Roya ; Julius, Lourdes A. N. ; Fitzpatrick, Emma ; Gusti, Yusof ; Burtenshaw, Denise ; Healy, Killian ; Finlay, Emma K. ; Kernan, David ; Llobera, Andreu ; Liu, Weimin ; Morrow, David ; Redmond, Eileen M. ; Ducrée, Jens ; Cahill, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6bf741222757935fb4f92ff1a8f09211453ec58c0b48559735296636359b2b3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aorta</topic><topic>Arteriosclerosis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Bone marrow</topic><topic>Cell Biology</topic><topic>Collagen (type III)</topic><topic>Elastin</topic><topic>Genetic analysis</topic><topic>Hedgehog Proteins</topic><topic>Jagged1 protein</topic><topic>Learning algorithms</topic><topic>Lesions</topic><topic>Life Sciences</topic><topic>Lymphocytes B</topic><topic>Machine learning</topic><topic>Macrophages</topic><topic>Mesenchyme</topic><topic>Multivariate analysis</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>Optics and Photonics</topic><topic>Phenotypes</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>S100 Calcium Binding Protein beta Subunit - metabolism</topic><topic>Smooth muscle</topic><topic>Stem Cells</topic><topic>Stem Cells - metabolism</topic><topic>Transforming growth factor-b1</topic><topic>Vascular diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molony, Claire</creatorcontrib><creatorcontrib>King, Damien</creatorcontrib><creatorcontrib>Di Luca, Mariana</creatorcontrib><creatorcontrib>Kitching, Michael</creatorcontrib><creatorcontrib>Olayinka, Abidemi</creatorcontrib><creatorcontrib>Hakimjavadi, Roya</creatorcontrib><creatorcontrib>Julius, Lourdes A. N.</creatorcontrib><creatorcontrib>Fitzpatrick, Emma</creatorcontrib><creatorcontrib>Gusti, Yusof</creatorcontrib><creatorcontrib>Burtenshaw, Denise</creatorcontrib><creatorcontrib>Healy, Killian</creatorcontrib><creatorcontrib>Finlay, Emma K.</creatorcontrib><creatorcontrib>Kernan, David</creatorcontrib><creatorcontrib>Llobera, Andreu</creatorcontrib><creatorcontrib>Liu, Weimin</creatorcontrib><creatorcontrib>Morrow, David</creatorcontrib><creatorcontrib>Redmond, Eileen M.</creatorcontrib><creatorcontrib>Ducrée, Jens</creatorcontrib><creatorcontrib>Cahill, Paul A.</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stem cell reviews and reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molony, Claire</au><au>King, Damien</au><au>Di Luca, Mariana</au><au>Kitching, Michael</au><au>Olayinka, Abidemi</au><au>Hakimjavadi, Roya</au><au>Julius, Lourdes A. N.</au><au>Fitzpatrick, Emma</au><au>Gusti, Yusof</au><au>Burtenshaw, Denise</au><au>Healy, Killian</au><au>Finlay, Emma K.</au><au>Kernan, David</au><au>Llobera, Andreu</au><au>Liu, Weimin</au><au>Morrow, David</au><au>Redmond, Eileen M.</au><au>Ducrée, Jens</au><au>Cahill, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disease-Relevant Single Cell Photonic Signatures Identify S100β Stem Cells and their Myogenic Progeny in Vascular Lesions</atitle><jtitle>Stem cell reviews and reports</jtitle><stitle>Stem Cell Rev and Rep</stitle><addtitle>Stem Cell Rev Rep</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>5</issue><spage>1713</spage><epage>1740</epage><pages>1713-1740</pages><issn>2629-3269</issn><eissn>2629-3277</eissn><abstract>A hallmark of subclinical atherosclerosis is the accumulation of vascular smooth muscle cell (SMC)-like cells leading to intimal thickening and lesion formation. While medial SMCs contribute to vascular lesions, the involvement of resident vascular stem cells (vSCs) remains unclear. We evaluated single cell photonics as a discriminator of cell phenotype in vitro before the presence of vSC within vascular lesions was assessed ex vivo using supervised machine learning and further validated using lineage tracing analysis
.
Using a novel lab-on-a-Disk(Load) platform, label-free single cell photonic emissions from normal and injured vessels ex vivo were interrogated and compared to freshly isolated aortic SMCs, cultured Movas SMCs, macrophages, B-cells, S100β
+
mVSc, bone marrow derived mesenchymal stem cells (MSC) and their respective myogenic progeny across five broadband light wavelengths (λ465 - λ670 ± 20 nm). We found that profiles were of sufficient coverage, specificity, and quality to clearly distinguish medial SMCs from different vascular beds (carotid vs aorta), discriminate normal carotid medial SMCs from lesional SMC-like cells ex vivo following flow restriction
,
and identify SMC differentiation of a series of multipotent stem cells following treatment with transforming growth factor beta 1 (TGF- β1), the Notch ligand Jagged1, and Sonic Hedgehog using multivariate analysis, in part, due to photonic emissions from enhanced collagen III and elastin expression. Supervised machine learning supported genetic lineage tracing analysis of S100β
+
vSCs and identified the presence of S100β
+
vSC-derived myogenic progeny within vascular lesions. We conclude disease-relevant photonic signatures may have predictive value for vascular disease.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33730327</pmid><doi>10.1007/s12015-021-10125-x</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-5385-6502</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2629-3269 |
ispartof | Stem cell reviews and reports, 2021-10, Vol.17 (5), p.1713-1740 |
issn | 2629-3269 2629-3277 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8446106 |
source | Springer Link |
subjects | Aorta Arteriosclerosis Biomedical and Life Sciences Biomedical Engineering and Bioengineering Bone marrow Cell Biology Collagen (type III) Elastin Genetic analysis Hedgehog Proteins Jagged1 protein Learning algorithms Lesions Life Sciences Lymphocytes B Machine learning Macrophages Mesenchyme Multivariate analysis Muscle, Smooth, Vascular - cytology Muscle, Smooth, Vascular - metabolism Muscle, Smooth, Vascular - pathology Optics and Photonics Phenotypes Regenerative Medicine/Tissue Engineering S100 Calcium Binding Protein beta Subunit - metabolism Smooth muscle Stem Cells Stem Cells - metabolism Transforming growth factor-b1 Vascular diseases |
title | Disease-Relevant Single Cell Photonic Signatures Identify S100β Stem Cells and their Myogenic Progeny in Vascular Lesions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disease-Relevant%20Single%20Cell%20Photonic%20Signatures%20Identify%20S100%CE%B2%20Stem%20Cells%20and%20their%20Myogenic%20Progeny%20in%20Vascular%20Lesions&rft.jtitle=Stem%20cell%20reviews%20and%20reports&rft.au=Molony,%20Claire&rft.date=2021-10-01&rft.volume=17&rft.issue=5&rft.spage=1713&rft.epage=1740&rft.pages=1713-1740&rft.issn=2629-3269&rft.eissn=2629-3277&rft_id=info:doi/10.1007/s12015-021-10125-x&rft_dat=%3Cproquest_pubme%3E2502807721%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-6bf741222757935fb4f92ff1a8f09211453ec58c0b48559735296636359b2b3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2587487292&rft_id=info:pmid/33730327&rfr_iscdi=true |