Loading…
The Influence of a Changing Local Environment during Photoinduced CO2 Dissociation
Though largely influencing the efficiency of a reaction, the molecular‐scale details of the local environment of the reactants are experimentally inaccessible hindering an in‐depth understanding of a catalyst's reactivity, a prerequisite to maximizing its efficiency. We introduce a method to fo...
Saved in:
Published in: | Angewandte Chemie International Edition 2021-08, Vol.60 (33), p.18217-18222 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 18222 |
container_issue | 33 |
container_start_page | 18217 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | Vyshnepolsky, Michael Ding, Zhao‐Bin Srivastava, Prashant Tesarik, Patrik Mazhar, Hussain Maestri, Matteo Morgenstern, Karina |
description | Though largely influencing the efficiency of a reaction, the molecular‐scale details of the local environment of the reactants are experimentally inaccessible hindering an in‐depth understanding of a catalyst's reactivity, a prerequisite to maximizing its efficiency. We introduce a method to follow individual molecules and their largely changing environment during a photochemical reaction. The method is illustrated for a rate‐limiting step in a photolytic reaction, the dissociation of CO2 on two catalytically relevant surfaces, Ag(100) and Cu(111). We reveal with a single‐molecule resolution how the reactant's surroundings evolve with progressing laser illumination and with it their propensity for dissociation. Counteracting processes lead to a volcano‐like reactivity. Our unprecedented local view during a photoinduced reaction opens the avenue for understanding the influence of the products on reaction yields on the nanoscale.
Following individual molecules and their changing environment during photoinduced dissociation reveals the importance of local changes during a reaction on its efficiency. Two counteracting processes lead to a volcano‐shaped reactivity. |
doi_str_mv | 10.1002/anie.202105468 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557345596</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3848-a38bfb08a546056341c5545ce04e632f9261ee1c2611c2d23c0f00aeda02ce253</originalsourceid><addsrcrecordid>eNpVUUtPAjEYbIxGEL16NE08L_a5tBcTgqgkRIzBc1O6XbZkaXEfGP69JSDRy_fITOabfAPALUZ9jBB50N7ZPkEEI85ScQa6mBOc0MGAnseZUZoMBMcdcFXXq8gXAqWXoEOplJJJ2gUf88LCic_L1npjYcihhqNC-6XzSzgNRpdw7LeuCn5tfQOzttoD70VogvNZa2wGRzMCn1xdB-N044K_Bhe5Lmt7c-w98Pk8no9ek-nsZTIaTpMNFUwkmopFvkBCR-OIp5RhwznjxiJmU0pySVJsLTaxxZIRalCOkLaZRsRYwmkPPB50N-1ibTMT_VW6VJvKrXW1U0E79R_xrlDLsFWC8VRiGQXujwJV-Gpt3ahVaCsfPSvC-YAyzmUaWXd_z5z0f38YCfJA-Hal3Z1wjNQ-IbVPSJ0SUsO3yfi00R_rvIS3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557345596</pqid></control><display><type>article</type><title>The Influence of a Changing Local Environment during Photoinduced CO2 Dissociation</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Vyshnepolsky, Michael ; Ding, Zhao‐Bin ; Srivastava, Prashant ; Tesarik, Patrik ; Mazhar, Hussain ; Maestri, Matteo ; Morgenstern, Karina</creator><creatorcontrib>Vyshnepolsky, Michael ; Ding, Zhao‐Bin ; Srivastava, Prashant ; Tesarik, Patrik ; Mazhar, Hussain ; Maestri, Matteo ; Morgenstern, Karina</creatorcontrib><description>Though largely influencing the efficiency of a reaction, the molecular‐scale details of the local environment of the reactants are experimentally inaccessible hindering an in‐depth understanding of a catalyst's reactivity, a prerequisite to maximizing its efficiency. We introduce a method to follow individual molecules and their largely changing environment during a photochemical reaction. The method is illustrated for a rate‐limiting step in a photolytic reaction, the dissociation of CO2 on two catalytically relevant surfaces, Ag(100) and Cu(111). We reveal with a single‐molecule resolution how the reactant's surroundings evolve with progressing laser illumination and with it their propensity for dissociation. Counteracting processes lead to a volcano‐like reactivity. Our unprecedented local view during a photoinduced reaction opens the avenue for understanding the influence of the products on reaction yields on the nanoscale.
Following individual molecules and their changing environment during photoinduced dissociation reveals the importance of local changes during a reaction on its efficiency. Two counteracting processes lead to a volcano‐shaped reactivity.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202105468</identifier><identifier>PMID: 33999493</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Catalysts ; Changing environments ; Copper ; density functional theory ; Photochemical reactions ; Photochemicals ; poisoning ; scanning tunneling microscopy ; Silver ; single-molecule studies ; Volcanoes</subject><ispartof>Angewandte Chemie International Edition, 2021-08, Vol.60 (33), p.18217-18222</ispartof><rights>2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6660-5286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33999493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vyshnepolsky, Michael</creatorcontrib><creatorcontrib>Ding, Zhao‐Bin</creatorcontrib><creatorcontrib>Srivastava, Prashant</creatorcontrib><creatorcontrib>Tesarik, Patrik</creatorcontrib><creatorcontrib>Mazhar, Hussain</creatorcontrib><creatorcontrib>Maestri, Matteo</creatorcontrib><creatorcontrib>Morgenstern, Karina</creatorcontrib><title>The Influence of a Changing Local Environment during Photoinduced CO2 Dissociation</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Though largely influencing the efficiency of a reaction, the molecular‐scale details of the local environment of the reactants are experimentally inaccessible hindering an in‐depth understanding of a catalyst's reactivity, a prerequisite to maximizing its efficiency. We introduce a method to follow individual molecules and their largely changing environment during a photochemical reaction. The method is illustrated for a rate‐limiting step in a photolytic reaction, the dissociation of CO2 on two catalytically relevant surfaces, Ag(100) and Cu(111). We reveal with a single‐molecule resolution how the reactant's surroundings evolve with progressing laser illumination and with it their propensity for dissociation. Counteracting processes lead to a volcano‐like reactivity. Our unprecedented local view during a photoinduced reaction opens the avenue for understanding the influence of the products on reaction yields on the nanoscale.
Following individual molecules and their changing environment during photoinduced dissociation reveals the importance of local changes during a reaction on its efficiency. Two counteracting processes lead to a volcano‐shaped reactivity.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Changing environments</subject><subject>Copper</subject><subject>density functional theory</subject><subject>Photochemical reactions</subject><subject>Photochemicals</subject><subject>poisoning</subject><subject>scanning tunneling microscopy</subject><subject>Silver</subject><subject>single-molecule studies</subject><subject>Volcanoes</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpVUUtPAjEYbIxGEL16NE08L_a5tBcTgqgkRIzBc1O6XbZkaXEfGP69JSDRy_fITOabfAPALUZ9jBB50N7ZPkEEI85ScQa6mBOc0MGAnseZUZoMBMcdcFXXq8gXAqWXoEOplJJJ2gUf88LCic_L1npjYcihhqNC-6XzSzgNRpdw7LeuCn5tfQOzttoD70VogvNZa2wGRzMCn1xdB-N044K_Bhe5Lmt7c-w98Pk8no9ek-nsZTIaTpMNFUwkmopFvkBCR-OIp5RhwznjxiJmU0pySVJsLTaxxZIRalCOkLaZRsRYwmkPPB50N-1ibTMT_VW6VJvKrXW1U0E79R_xrlDLsFWC8VRiGQXujwJV-Gpt3ahVaCsfPSvC-YAyzmUaWXd_z5z0f38YCfJA-Hal3Z1wjNQ-IbVPSJ0SUsO3yfi00R_rvIS3</recordid><startdate>20210809</startdate><enddate>20210809</enddate><creator>Vyshnepolsky, Michael</creator><creator>Ding, Zhao‐Bin</creator><creator>Srivastava, Prashant</creator><creator>Tesarik, Patrik</creator><creator>Mazhar, Hussain</creator><creator>Maestri, Matteo</creator><creator>Morgenstern, Karina</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>7TM</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6660-5286</orcidid></search><sort><creationdate>20210809</creationdate><title>The Influence of a Changing Local Environment during Photoinduced CO2 Dissociation</title><author>Vyshnepolsky, Michael ; Ding, Zhao‐Bin ; Srivastava, Prashant ; Tesarik, Patrik ; Mazhar, Hussain ; Maestri, Matteo ; Morgenstern, Karina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3848-a38bfb08a546056341c5545ce04e632f9261ee1c2611c2d23c0f00aeda02ce253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Changing environments</topic><topic>Copper</topic><topic>density functional theory</topic><topic>Photochemical reactions</topic><topic>Photochemicals</topic><topic>poisoning</topic><topic>scanning tunneling microscopy</topic><topic>Silver</topic><topic>single-molecule studies</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vyshnepolsky, Michael</creatorcontrib><creatorcontrib>Ding, Zhao‐Bin</creatorcontrib><creatorcontrib>Srivastava, Prashant</creatorcontrib><creatorcontrib>Tesarik, Patrik</creatorcontrib><creatorcontrib>Mazhar, Hussain</creatorcontrib><creatorcontrib>Maestri, Matteo</creatorcontrib><creatorcontrib>Morgenstern, Karina</creatorcontrib><collection>Wiley-Blackwell Open Access Titles(OpenAccess)</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vyshnepolsky, Michael</au><au>Ding, Zhao‐Bin</au><au>Srivastava, Prashant</au><au>Tesarik, Patrik</au><au>Mazhar, Hussain</au><au>Maestri, Matteo</au><au>Morgenstern, Karina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of a Changing Local Environment during Photoinduced CO2 Dissociation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-08-09</date><risdate>2021</risdate><volume>60</volume><issue>33</issue><spage>18217</spage><epage>18222</epage><pages>18217-18222</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Though largely influencing the efficiency of a reaction, the molecular‐scale details of the local environment of the reactants are experimentally inaccessible hindering an in‐depth understanding of a catalyst's reactivity, a prerequisite to maximizing its efficiency. We introduce a method to follow individual molecules and their largely changing environment during a photochemical reaction. The method is illustrated for a rate‐limiting step in a photolytic reaction, the dissociation of CO2 on two catalytically relevant surfaces, Ag(100) and Cu(111). We reveal with a single‐molecule resolution how the reactant's surroundings evolve with progressing laser illumination and with it their propensity for dissociation. Counteracting processes lead to a volcano‐like reactivity. Our unprecedented local view during a photoinduced reaction opens the avenue for understanding the influence of the products on reaction yields on the nanoscale.
Following individual molecules and their changing environment during photoinduced dissociation reveals the importance of local changes during a reaction on its efficiency. Two counteracting processes lead to a volcano‐shaped reactivity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33999493</pmid><doi>10.1002/anie.202105468</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-6660-5286</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-08, Vol.60 (33), p.18217-18222 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8456919 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Carbon dioxide Catalysts Changing environments Copper density functional theory Photochemical reactions Photochemicals poisoning scanning tunneling microscopy Silver single-molecule studies Volcanoes |
title | The Influence of a Changing Local Environment during Photoinduced CO2 Dissociation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20a%20Changing%20Local%20Environment%20during%20Photoinduced%20CO2%20Dissociation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Vyshnepolsky,%20Michael&rft.date=2021-08-09&rft.volume=60&rft.issue=33&rft.spage=18217&rft.epage=18222&rft.pages=18217-18222&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202105468&rft_dat=%3Cproquest_pubme%3E2557345596%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p3848-a38bfb08a546056341c5545ce04e632f9261ee1c2611c2d23c0f00aeda02ce253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557345596&rft_id=info:pmid/33999493&rfr_iscdi=true |