Loading…
Dynamics of thin precursor film in wetting of nanopatterned surfaces
The spreading of a liquid droplet on flat surfaces is a well-understood phenomenon, but little is known about how liquids spread on a rough surface. When the surface roughness is of the nanoscopic length scale, the capillary forces dominate and the liquid droplet spreads by wetting the nanoscale tex...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2021-09, Vol.118 (38), p.1-6 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-76a08f66b07bd08937aad8952042949eb902f3e8b0b9f83392174e4f0d99f4913 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-76a08f66b07bd08937aad8952042949eb902f3e8b0b9f83392174e4f0d99f4913 |
container_end_page | 6 |
container_issue | 38 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Anand, Utkarsh Ghosh, Tanmay Aabdin, Zainul Koneti, Siddardha Xu, XiuMei Holsteyns, Frank Mirsaidov, Utkur |
description | The spreading of a liquid droplet on flat surfaces is a well-understood phenomenon, but little is known about how liquids spread on a rough surface. When the surface roughness is of the nanoscopic length scale, the capillary forces dominate and the liquid droplet spreads by wetting the nanoscale textures that act as capillaries. Here, using a combination of advanced nanofabrication and liquidphase transmission electron microscopy, we image the wetting of a surface patterned with a dense array of nanopillars of varying heights. Our real-time, high-speed observations reveal that water wets the surface in two stages: 1) an ultrathin precursor water film forms on the surface, and then 2) the capillary action by nanopillars pulls the water, increasing the overall thickness of water film. These direct nanoscale observations capture the previously elusive precursor film, which is a critical intermediate step in wetting of rough surfaces. |
doi_str_mv | 10.1073/pnas.2108074118 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8463872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075624</jstor_id><sourcerecordid>27075624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-76a08f66b07bd08937aad8952042949eb902f3e8b0b9f83392174e4f0d99f4913</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa0KVLa0556KInHhEnb8EX9ckCqgBWklLvRsOYkNWSV2ajtU_PckWrqlnEaa95uneXoIfcVwjkHQ9ehNOicYJAiGsfyAVhgULjlTcIBWAESUkhF2hD6ltAUAVUn4iI4oq2hVVWSFrq6evRm6JhXBFfmx88UYbTPFFGLhun4o5s0fm3PnHxbCGx9Gk7ON3rZFmqIzjU2f0aEzfbJfXucx-vXj-v7yptzc_by9_L4pG8ZoLgU3IB3nNYi6BamoMKaVqiLAiGLK1gqIo1bWUCsnKVUEC2aZg1YpxxSmx-hi5ztO9WDbxvocTa_H2A0mPutgOv2_4rtH_RCetGScSkFmg7NXgxh-TzZlPXSpsX1vvA1T0qQSjAEHKWf09B26DVP0c7yF4pRzKRfD9Y5qYkgpWrd_BoNeGtJLQ_pfQ_PFydsMe_5vJTPwbQdsUw5xrxMBouKE0RdhgpYL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576366882</pqid></control><display><type>article</type><title>Dynamics of thin precursor film in wetting of nanopatterned surfaces</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Anand, Utkarsh ; Ghosh, Tanmay ; Aabdin, Zainul ; Koneti, Siddardha ; Xu, XiuMei ; Holsteyns, Frank ; Mirsaidov, Utkur</creator><creatorcontrib>Anand, Utkarsh ; Ghosh, Tanmay ; Aabdin, Zainul ; Koneti, Siddardha ; Xu, XiuMei ; Holsteyns, Frank ; Mirsaidov, Utkur</creatorcontrib><description>The spreading of a liquid droplet on flat surfaces is a well-understood phenomenon, but little is known about how liquids spread on a rough surface. When the surface roughness is of the nanoscopic length scale, the capillary forces dominate and the liquid droplet spreads by wetting the nanoscale textures that act as capillaries. Here, using a combination of advanced nanofabrication and liquidphase transmission electron microscopy, we image the wetting of a surface patterned with a dense array of nanopillars of varying heights. Our real-time, high-speed observations reveal that water wets the surface in two stages: 1) an ultrathin precursor water film forms on the surface, and then 2) the capillary action by nanopillars pulls the water, increasing the overall thickness of water film. These direct nanoscale observations capture the previously elusive precursor film, which is a critical intermediate step in wetting of rough surfaces.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2108074118</identifier><identifier>PMID: 34535552</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Capillaries ; Capillarity ; Droplets ; Flat surfaces ; Image transmission ; Liquid phases ; Nanofabrication ; Physical Sciences ; Precursors ; Surface roughness ; Thickness ; Transmission electron microscopy ; Water film ; Wetting</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (38), p.1-6</ispartof><rights>Copyright National Academy of Sciences Sep 21, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-76a08f66b07bd08937aad8952042949eb902f3e8b0b9f83392174e4f0d99f4913</citedby><cites>FETCH-LOGICAL-c443t-76a08f66b07bd08937aad8952042949eb902f3e8b0b9f83392174e4f0d99f4913</cites><orcidid>0000-0002-0436-1327 ; 0000-0002-3356-8693 ; 0000-0003-0532-2407 ; 0000-0001-8673-466X ; 0000-0003-3914-8435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075624$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075624$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34535552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anand, Utkarsh</creatorcontrib><creatorcontrib>Ghosh, Tanmay</creatorcontrib><creatorcontrib>Aabdin, Zainul</creatorcontrib><creatorcontrib>Koneti, Siddardha</creatorcontrib><creatorcontrib>Xu, XiuMei</creatorcontrib><creatorcontrib>Holsteyns, Frank</creatorcontrib><creatorcontrib>Mirsaidov, Utkur</creatorcontrib><title>Dynamics of thin precursor film in wetting of nanopatterned surfaces</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The spreading of a liquid droplet on flat surfaces is a well-understood phenomenon, but little is known about how liquids spread on a rough surface. When the surface roughness is of the nanoscopic length scale, the capillary forces dominate and the liquid droplet spreads by wetting the nanoscale textures that act as capillaries. Here, using a combination of advanced nanofabrication and liquidphase transmission electron microscopy, we image the wetting of a surface patterned with a dense array of nanopillars of varying heights. Our real-time, high-speed observations reveal that water wets the surface in two stages: 1) an ultrathin precursor water film forms on the surface, and then 2) the capillary action by nanopillars pulls the water, increasing the overall thickness of water film. These direct nanoscale observations capture the previously elusive precursor film, which is a critical intermediate step in wetting of rough surfaces.</description><subject>Capillaries</subject><subject>Capillarity</subject><subject>Droplets</subject><subject>Flat surfaces</subject><subject>Image transmission</subject><subject>Liquid phases</subject><subject>Nanofabrication</subject><subject>Physical Sciences</subject><subject>Precursors</subject><subject>Surface roughness</subject><subject>Thickness</subject><subject>Transmission electron microscopy</subject><subject>Water film</subject><subject>Wetting</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc1P3DAQxa0KVLa0556KInHhEnb8EX9ckCqgBWklLvRsOYkNWSV2ajtU_PckWrqlnEaa95uneXoIfcVwjkHQ9ehNOicYJAiGsfyAVhgULjlTcIBWAESUkhF2hD6ltAUAVUn4iI4oq2hVVWSFrq6evRm6JhXBFfmx88UYbTPFFGLhun4o5s0fm3PnHxbCGx9Gk7ON3rZFmqIzjU2f0aEzfbJfXucx-vXj-v7yptzc_by9_L4pG8ZoLgU3IB3nNYi6BamoMKaVqiLAiGLK1gqIo1bWUCsnKVUEC2aZg1YpxxSmx-hi5ztO9WDbxvocTa_H2A0mPutgOv2_4rtH_RCetGScSkFmg7NXgxh-TzZlPXSpsX1vvA1T0qQSjAEHKWf09B26DVP0c7yF4pRzKRfD9Y5qYkgpWrd_BoNeGtJLQ_pfQ_PFydsMe_5vJTPwbQdsUw5xrxMBouKE0RdhgpYL</recordid><startdate>20210921</startdate><enddate>20210921</enddate><creator>Anand, Utkarsh</creator><creator>Ghosh, Tanmay</creator><creator>Aabdin, Zainul</creator><creator>Koneti, Siddardha</creator><creator>Xu, XiuMei</creator><creator>Holsteyns, Frank</creator><creator>Mirsaidov, Utkur</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0436-1327</orcidid><orcidid>https://orcid.org/0000-0002-3356-8693</orcidid><orcidid>https://orcid.org/0000-0003-0532-2407</orcidid><orcidid>https://orcid.org/0000-0001-8673-466X</orcidid><orcidid>https://orcid.org/0000-0003-3914-8435</orcidid></search><sort><creationdate>20210921</creationdate><title>Dynamics of thin precursor film in wetting of nanopatterned surfaces</title><author>Anand, Utkarsh ; Ghosh, Tanmay ; Aabdin, Zainul ; Koneti, Siddardha ; Xu, XiuMei ; Holsteyns, Frank ; Mirsaidov, Utkur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-76a08f66b07bd08937aad8952042949eb902f3e8b0b9f83392174e4f0d99f4913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capillaries</topic><topic>Capillarity</topic><topic>Droplets</topic><topic>Flat surfaces</topic><topic>Image transmission</topic><topic>Liquid phases</topic><topic>Nanofabrication</topic><topic>Physical Sciences</topic><topic>Precursors</topic><topic>Surface roughness</topic><topic>Thickness</topic><topic>Transmission electron microscopy</topic><topic>Water film</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anand, Utkarsh</creatorcontrib><creatorcontrib>Ghosh, Tanmay</creatorcontrib><creatorcontrib>Aabdin, Zainul</creatorcontrib><creatorcontrib>Koneti, Siddardha</creatorcontrib><creatorcontrib>Xu, XiuMei</creatorcontrib><creatorcontrib>Holsteyns, Frank</creatorcontrib><creatorcontrib>Mirsaidov, Utkur</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anand, Utkarsh</au><au>Ghosh, Tanmay</au><au>Aabdin, Zainul</au><au>Koneti, Siddardha</au><au>Xu, XiuMei</au><au>Holsteyns, Frank</au><au>Mirsaidov, Utkur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of thin precursor film in wetting of nanopatterned surfaces</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-09-21</date><risdate>2021</risdate><volume>118</volume><issue>38</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The spreading of a liquid droplet on flat surfaces is a well-understood phenomenon, but little is known about how liquids spread on a rough surface. When the surface roughness is of the nanoscopic length scale, the capillary forces dominate and the liquid droplet spreads by wetting the nanoscale textures that act as capillaries. Here, using a combination of advanced nanofabrication and liquidphase transmission electron microscopy, we image the wetting of a surface patterned with a dense array of nanopillars of varying heights. Our real-time, high-speed observations reveal that water wets the surface in two stages: 1) an ultrathin precursor water film forms on the surface, and then 2) the capillary action by nanopillars pulls the water, increasing the overall thickness of water film. These direct nanoscale observations capture the previously elusive precursor film, which is a critical intermediate step in wetting of rough surfaces.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34535552</pmid><doi>10.1073/pnas.2108074118</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0436-1327</orcidid><orcidid>https://orcid.org/0000-0002-3356-8693</orcidid><orcidid>https://orcid.org/0000-0003-0532-2407</orcidid><orcidid>https://orcid.org/0000-0001-8673-466X</orcidid><orcidid>https://orcid.org/0000-0003-3914-8435</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (38), p.1-6 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8463872 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Capillaries Capillarity Droplets Flat surfaces Image transmission Liquid phases Nanofabrication Physical Sciences Precursors Surface roughness Thickness Transmission electron microscopy Water film Wetting |
title | Dynamics of thin precursor film in wetting of nanopatterned surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20thin%20precursor%20film%20in%20wetting%20of%20nanopatterned%20surfaces&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Anand,%20Utkarsh&rft.date=2021-09-21&rft.volume=118&rft.issue=38&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2108074118&rft_dat=%3Cjstor_pubme%3E27075624%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-76a08f66b07bd08937aad8952042949eb902f3e8b0b9f83392174e4f0d99f4913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576366882&rft_id=info:pmid/34535552&rft_jstor_id=27075624&rfr_iscdi=true |