Loading…

Dynamics of thin precursor film in wetting of nanopatterned surfaces

The spreading of a liquid droplet on flat surfaces is a well-understood phenomenon, but little is known about how liquids spread on a rough surface. When the surface roughness is of the nanoscopic length scale, the capillary forces dominate and the liquid droplet spreads by wetting the nanoscale tex...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2021-09, Vol.118 (38), p.1-6
Main Authors: Anand, Utkarsh, Ghosh, Tanmay, Aabdin, Zainul, Koneti, Siddardha, Xu, XiuMei, Holsteyns, Frank, Mirsaidov, Utkur
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-76a08f66b07bd08937aad8952042949eb902f3e8b0b9f83392174e4f0d99f4913
cites cdi_FETCH-LOGICAL-c443t-76a08f66b07bd08937aad8952042949eb902f3e8b0b9f83392174e4f0d99f4913
container_end_page 6
container_issue 38
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Anand, Utkarsh
Ghosh, Tanmay
Aabdin, Zainul
Koneti, Siddardha
Xu, XiuMei
Holsteyns, Frank
Mirsaidov, Utkur
description The spreading of a liquid droplet on flat surfaces is a well-understood phenomenon, but little is known about how liquids spread on a rough surface. When the surface roughness is of the nanoscopic length scale, the capillary forces dominate and the liquid droplet spreads by wetting the nanoscale textures that act as capillaries. Here, using a combination of advanced nanofabrication and liquidphase transmission electron microscopy, we image the wetting of a surface patterned with a dense array of nanopillars of varying heights. Our real-time, high-speed observations reveal that water wets the surface in two stages: 1) an ultrathin precursor water film forms on the surface, and then 2) the capillary action by nanopillars pulls the water, increasing the overall thickness of water film. These direct nanoscale observations capture the previously elusive precursor film, which is a critical intermediate step in wetting of rough surfaces.
doi_str_mv 10.1073/pnas.2108074118
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8463872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075624</jstor_id><sourcerecordid>27075624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-76a08f66b07bd08937aad8952042949eb902f3e8b0b9f83392174e4f0d99f4913</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa0KVLa0556KInHhEnb8EX9ckCqgBWklLvRsOYkNWSV2ajtU_PckWrqlnEaa95uneXoIfcVwjkHQ9ehNOicYJAiGsfyAVhgULjlTcIBWAESUkhF2hD6ltAUAVUn4iI4oq2hVVWSFrq6evRm6JhXBFfmx88UYbTPFFGLhun4o5s0fm3PnHxbCGx9Gk7ON3rZFmqIzjU2f0aEzfbJfXucx-vXj-v7yptzc_by9_L4pG8ZoLgU3IB3nNYi6BamoMKaVqiLAiGLK1gqIo1bWUCsnKVUEC2aZg1YpxxSmx-hi5ztO9WDbxvocTa_H2A0mPutgOv2_4rtH_RCetGScSkFmg7NXgxh-TzZlPXSpsX1vvA1T0qQSjAEHKWf09B26DVP0c7yF4pRzKRfD9Y5qYkgpWrd_BoNeGtJLQ_pfQ_PFydsMe_5vJTPwbQdsUw5xrxMBouKE0RdhgpYL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576366882</pqid></control><display><type>article</type><title>Dynamics of thin precursor film in wetting of nanopatterned surfaces</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Anand, Utkarsh ; Ghosh, Tanmay ; Aabdin, Zainul ; Koneti, Siddardha ; Xu, XiuMei ; Holsteyns, Frank ; Mirsaidov, Utkur</creator><creatorcontrib>Anand, Utkarsh ; Ghosh, Tanmay ; Aabdin, Zainul ; Koneti, Siddardha ; Xu, XiuMei ; Holsteyns, Frank ; Mirsaidov, Utkur</creatorcontrib><description>The spreading of a liquid droplet on flat surfaces is a well-understood phenomenon, but little is known about how liquids spread on a rough surface. When the surface roughness is of the nanoscopic length scale, the capillary forces dominate and the liquid droplet spreads by wetting the nanoscale textures that act as capillaries. Here, using a combination of advanced nanofabrication and liquidphase transmission electron microscopy, we image the wetting of a surface patterned with a dense array of nanopillars of varying heights. Our real-time, high-speed observations reveal that water wets the surface in two stages: 1) an ultrathin precursor water film forms on the surface, and then 2) the capillary action by nanopillars pulls the water, increasing the overall thickness of water film. These direct nanoscale observations capture the previously elusive precursor film, which is a critical intermediate step in wetting of rough surfaces.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2108074118</identifier><identifier>PMID: 34535552</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Capillaries ; Capillarity ; Droplets ; Flat surfaces ; Image transmission ; Liquid phases ; Nanofabrication ; Physical Sciences ; Precursors ; Surface roughness ; Thickness ; Transmission electron microscopy ; Water film ; Wetting</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (38), p.1-6</ispartof><rights>Copyright National Academy of Sciences Sep 21, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-76a08f66b07bd08937aad8952042949eb902f3e8b0b9f83392174e4f0d99f4913</citedby><cites>FETCH-LOGICAL-c443t-76a08f66b07bd08937aad8952042949eb902f3e8b0b9f83392174e4f0d99f4913</cites><orcidid>0000-0002-0436-1327 ; 0000-0002-3356-8693 ; 0000-0003-0532-2407 ; 0000-0001-8673-466X ; 0000-0003-3914-8435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075624$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075624$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34535552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anand, Utkarsh</creatorcontrib><creatorcontrib>Ghosh, Tanmay</creatorcontrib><creatorcontrib>Aabdin, Zainul</creatorcontrib><creatorcontrib>Koneti, Siddardha</creatorcontrib><creatorcontrib>Xu, XiuMei</creatorcontrib><creatorcontrib>Holsteyns, Frank</creatorcontrib><creatorcontrib>Mirsaidov, Utkur</creatorcontrib><title>Dynamics of thin precursor film in wetting of nanopatterned surfaces</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The spreading of a liquid droplet on flat surfaces is a well-understood phenomenon, but little is known about how liquids spread on a rough surface. When the surface roughness is of the nanoscopic length scale, the capillary forces dominate and the liquid droplet spreads by wetting the nanoscale textures that act as capillaries. Here, using a combination of advanced nanofabrication and liquidphase transmission electron microscopy, we image the wetting of a surface patterned with a dense array of nanopillars of varying heights. Our real-time, high-speed observations reveal that water wets the surface in two stages: 1) an ultrathin precursor water film forms on the surface, and then 2) the capillary action by nanopillars pulls the water, increasing the overall thickness of water film. These direct nanoscale observations capture the previously elusive precursor film, which is a critical intermediate step in wetting of rough surfaces.</description><subject>Capillaries</subject><subject>Capillarity</subject><subject>Droplets</subject><subject>Flat surfaces</subject><subject>Image transmission</subject><subject>Liquid phases</subject><subject>Nanofabrication</subject><subject>Physical Sciences</subject><subject>Precursors</subject><subject>Surface roughness</subject><subject>Thickness</subject><subject>Transmission electron microscopy</subject><subject>Water film</subject><subject>Wetting</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc1P3DAQxa0KVLa0556KInHhEnb8EX9ckCqgBWklLvRsOYkNWSV2ajtU_PckWrqlnEaa95uneXoIfcVwjkHQ9ehNOicYJAiGsfyAVhgULjlTcIBWAESUkhF2hD6ltAUAVUn4iI4oq2hVVWSFrq6evRm6JhXBFfmx88UYbTPFFGLhun4o5s0fm3PnHxbCGx9Gk7ON3rZFmqIzjU2f0aEzfbJfXucx-vXj-v7yptzc_by9_L4pG8ZoLgU3IB3nNYi6BamoMKaVqiLAiGLK1gqIo1bWUCsnKVUEC2aZg1YpxxSmx-hi5ztO9WDbxvocTa_H2A0mPutgOv2_4rtH_RCetGScSkFmg7NXgxh-TzZlPXSpsX1vvA1T0qQSjAEHKWf09B26DVP0c7yF4pRzKRfD9Y5qYkgpWrd_BoNeGtJLQ_pfQ_PFydsMe_5vJTPwbQdsUw5xrxMBouKE0RdhgpYL</recordid><startdate>20210921</startdate><enddate>20210921</enddate><creator>Anand, Utkarsh</creator><creator>Ghosh, Tanmay</creator><creator>Aabdin, Zainul</creator><creator>Koneti, Siddardha</creator><creator>Xu, XiuMei</creator><creator>Holsteyns, Frank</creator><creator>Mirsaidov, Utkur</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0436-1327</orcidid><orcidid>https://orcid.org/0000-0002-3356-8693</orcidid><orcidid>https://orcid.org/0000-0003-0532-2407</orcidid><orcidid>https://orcid.org/0000-0001-8673-466X</orcidid><orcidid>https://orcid.org/0000-0003-3914-8435</orcidid></search><sort><creationdate>20210921</creationdate><title>Dynamics of thin precursor film in wetting of nanopatterned surfaces</title><author>Anand, Utkarsh ; Ghosh, Tanmay ; Aabdin, Zainul ; Koneti, Siddardha ; Xu, XiuMei ; Holsteyns, Frank ; Mirsaidov, Utkur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-76a08f66b07bd08937aad8952042949eb902f3e8b0b9f83392174e4f0d99f4913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capillaries</topic><topic>Capillarity</topic><topic>Droplets</topic><topic>Flat surfaces</topic><topic>Image transmission</topic><topic>Liquid phases</topic><topic>Nanofabrication</topic><topic>Physical Sciences</topic><topic>Precursors</topic><topic>Surface roughness</topic><topic>Thickness</topic><topic>Transmission electron microscopy</topic><topic>Water film</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anand, Utkarsh</creatorcontrib><creatorcontrib>Ghosh, Tanmay</creatorcontrib><creatorcontrib>Aabdin, Zainul</creatorcontrib><creatorcontrib>Koneti, Siddardha</creatorcontrib><creatorcontrib>Xu, XiuMei</creatorcontrib><creatorcontrib>Holsteyns, Frank</creatorcontrib><creatorcontrib>Mirsaidov, Utkur</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anand, Utkarsh</au><au>Ghosh, Tanmay</au><au>Aabdin, Zainul</au><au>Koneti, Siddardha</au><au>Xu, XiuMei</au><au>Holsteyns, Frank</au><au>Mirsaidov, Utkur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of thin precursor film in wetting of nanopatterned surfaces</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-09-21</date><risdate>2021</risdate><volume>118</volume><issue>38</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The spreading of a liquid droplet on flat surfaces is a well-understood phenomenon, but little is known about how liquids spread on a rough surface. When the surface roughness is of the nanoscopic length scale, the capillary forces dominate and the liquid droplet spreads by wetting the nanoscale textures that act as capillaries. Here, using a combination of advanced nanofabrication and liquidphase transmission electron microscopy, we image the wetting of a surface patterned with a dense array of nanopillars of varying heights. Our real-time, high-speed observations reveal that water wets the surface in two stages: 1) an ultrathin precursor water film forms on the surface, and then 2) the capillary action by nanopillars pulls the water, increasing the overall thickness of water film. These direct nanoscale observations capture the previously elusive precursor film, which is a critical intermediate step in wetting of rough surfaces.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34535552</pmid><doi>10.1073/pnas.2108074118</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0436-1327</orcidid><orcidid>https://orcid.org/0000-0002-3356-8693</orcidid><orcidid>https://orcid.org/0000-0003-0532-2407</orcidid><orcidid>https://orcid.org/0000-0001-8673-466X</orcidid><orcidid>https://orcid.org/0000-0003-3914-8435</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (38), p.1-6
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8463872
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Capillaries
Capillarity
Droplets
Flat surfaces
Image transmission
Liquid phases
Nanofabrication
Physical Sciences
Precursors
Surface roughness
Thickness
Transmission electron microscopy
Water film
Wetting
title Dynamics of thin precursor film in wetting of nanopatterned surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20thin%20precursor%20film%20in%20wetting%20of%20nanopatterned%20surfaces&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Anand,%20Utkarsh&rft.date=2021-09-21&rft.volume=118&rft.issue=38&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2108074118&rft_dat=%3Cjstor_pubme%3E27075624%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-76a08f66b07bd08937aad8952042949eb902f3e8b0b9f83392174e4f0d99f4913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576366882&rft_id=info:pmid/34535552&rft_jstor_id=27075624&rfr_iscdi=true