Loading…

Restoring fertility in yeast hybrids: Breeding and quantitative genetics of beneficial traits

Hybrids between species can harbor a combination of beneficial traits from each parent and may exhibit hybrid vigor, more readily adapting to new harsher environments. Interspecies hybrids are also sterile and therefore an evolutionary dead end unless fertility is restored, usually via auto-polyploi...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2021-09, Vol.118 (38), p.1-12
Main Authors: Naseeb, Samina, Visinoni, Federico, Hu, Yue, Roberts, Alex J. Hinks, Maslowska, Agnieszka, Walsh, Thomas, Smart, Katherine A., Louis, Edward J., Delneri, Daniela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-e2cab6dc4340f4474e6d63b9c02708f3cd2d08a155329a8a5cb57ab369401f623
cites cdi_FETCH-LOGICAL-c443t-e2cab6dc4340f4474e6d63b9c02708f3cd2d08a155329a8a5cb57ab369401f623
container_end_page 12
container_issue 38
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Naseeb, Samina
Visinoni, Federico
Hu, Yue
Roberts, Alex J. Hinks
Maslowska, Agnieszka
Walsh, Thomas
Smart, Katherine A.
Louis, Edward J.
Delneri, Daniela
description Hybrids between species can harbor a combination of beneficial traits from each parent and may exhibit hybrid vigor, more readily adapting to new harsher environments. Interspecies hybrids are also sterile and therefore an evolutionary dead end unless fertility is restored, usually via auto-polyploidisation events. In the Saccharomyces genus, hybrids are readily found in nature and in industrial settings, where they have adapted to severe fermentative conditions. Due to their hybrid sterility, the development of new commercial yeast strains has so far been primarily conducted via selection methods rather than via further breeding. In this study, we overcame infertility by creating tetraploid intermediates of Saccharomyces interspecies hybrids to allow continuous multigenerational breeding. We incorporated nuclear and mitochondrial genetic diversity within each parental species, allowing for quantitative genetic analysis of traits exhibited by the hybrids and for nuclear–mitochondrial interactions to be assessed. Using pooled F12 generation segregants of different hybrids with extreme phenotype distributions, we identified quantitative trait loci (QTLs) for tolerance to high and low temperatures, high sugar concentration, high ethanol concentration, and acetic acid levels. We identified QTLs that are species specific, that are shared between species, as well as hybrid specific, in which the variants do not exhibit phenotypic differences in the original parental species. Moreover, we could distinguish between mitochondria-type–dependent and – independent traits. This study tackles the complexity of the genetic interactions and traits in hybrid species, bringing hybrids into the realm of full genetic analysis of diploid species, and paves the road for the biotechnological exploitation of yeast biodiversity.
doi_str_mv 10.1073/pnas.2101242118
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8463882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075657</jstor_id><sourcerecordid>27075657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-e2cab6dc4340f4474e6d63b9c02708f3cd2d08a155329a8a5cb57ab369401f623</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhoMobk6vvVIKetvt5LPpjSDDLxgIotchTdMtY2tn0gn996ZsTr3KxXnOm_c8CF1iGGPI6GRT6zAmGDBhBGN5hIYYcpwKlsMxGgKQLJWMsAE6C2EJADmXcIoGlHEsCZZDdPtmQ9t4V8-TyvrWrVzbJa5OOqtDmyy6wrsynKOTSq-Cvdi_I_Tx-PA-fU5nr08v0_tZahijbWqJ0YUoDaMMKsYyZkUpaJGbWANkRU1JSpAac05JrqXmpuCZLqjIGeBKEDpCd7vczbZY29LYuvV6pTberbXvVKOd-j-p3ULNmy8lmaBS9gE3-wDffG7jZWrZbH0dOyvCM0FFFk1FarKjjG9C8LY6_IBB9VpVr1X9ao0b13-LHfgfjxG42gHL3uZhHu_OuOAZ_QYQDXzD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576367012</pqid></control><display><type>article</type><title>Restoring fertility in yeast hybrids: Breeding and quantitative genetics of beneficial traits</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Naseeb, Samina ; Visinoni, Federico ; Hu, Yue ; Roberts, Alex J. Hinks ; Maslowska, Agnieszka ; Walsh, Thomas ; Smart, Katherine A. ; Louis, Edward J. ; Delneri, Daniela</creator><creatorcontrib>Naseeb, Samina ; Visinoni, Federico ; Hu, Yue ; Roberts, Alex J. Hinks ; Maslowska, Agnieszka ; Walsh, Thomas ; Smart, Katherine A. ; Louis, Edward J. ; Delneri, Daniela</creatorcontrib><description>Hybrids between species can harbor a combination of beneficial traits from each parent and may exhibit hybrid vigor, more readily adapting to new harsher environments. Interspecies hybrids are also sterile and therefore an evolutionary dead end unless fertility is restored, usually via auto-polyploidisation events. In the Saccharomyces genus, hybrids are readily found in nature and in industrial settings, where they have adapted to severe fermentative conditions. Due to their hybrid sterility, the development of new commercial yeast strains has so far been primarily conducted via selection methods rather than via further breeding. In this study, we overcame infertility by creating tetraploid intermediates of Saccharomyces interspecies hybrids to allow continuous multigenerational breeding. We incorporated nuclear and mitochondrial genetic diversity within each parental species, allowing for quantitative genetic analysis of traits exhibited by the hybrids and for nuclear–mitochondrial interactions to be assessed. Using pooled F12 generation segregants of different hybrids with extreme phenotype distributions, we identified quantitative trait loci (QTLs) for tolerance to high and low temperatures, high sugar concentration, high ethanol concentration, and acetic acid levels. We identified QTLs that are species specific, that are shared between species, as well as hybrid specific, in which the variants do not exhibit phenotypic differences in the original parental species. Moreover, we could distinguish between mitochondria-type–dependent and – independent traits. This study tackles the complexity of the genetic interactions and traits in hybrid species, bringing hybrids into the realm of full genetic analysis of diploid species, and paves the road for the biotechnological exploitation of yeast biodiversity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2101242118</identifier><identifier>PMID: 34518218</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acetic acid ; Acetic Acid - metabolism ; Biodiversity ; Biological Sciences ; Breeding ; Cold Temperature ; Diploids ; Ethanol ; Ethanol - metabolism ; Evolution ; Exploitation ; Fermentation - genetics ; Fertility ; Gene mapping ; Genetic analysis ; Genetic diversity ; Genetic Variation - genetics ; Genetics ; Genome, Fungal - genetics ; Hybrid vigor ; Hybrids ; Infertility ; Intermediates ; Low temperature ; Mitochondria ; Mitochondria - genetics ; Phenotype ; Phenotypes ; Quantitative genetics ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Saccharomyces ; Saccharomyces - genetics ; Species ; Species diversity ; Sterility ; Sugars - metabolism ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (38), p.1-12</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Sep 21, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-e2cab6dc4340f4474e6d63b9c02708f3cd2d08a155329a8a5cb57ab369401f623</citedby><cites>FETCH-LOGICAL-c443t-e2cab6dc4340f4474e6d63b9c02708f3cd2d08a155329a8a5cb57ab369401f623</cites><orcidid>0000-0001-9840-7017 ; 0000-0003-1157-3608 ; 0000-0003-3599-5813 ; 0000-0001-8070-411X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075657$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075657$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34518218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naseeb, Samina</creatorcontrib><creatorcontrib>Visinoni, Federico</creatorcontrib><creatorcontrib>Hu, Yue</creatorcontrib><creatorcontrib>Roberts, Alex J. Hinks</creatorcontrib><creatorcontrib>Maslowska, Agnieszka</creatorcontrib><creatorcontrib>Walsh, Thomas</creatorcontrib><creatorcontrib>Smart, Katherine A.</creatorcontrib><creatorcontrib>Louis, Edward J.</creatorcontrib><creatorcontrib>Delneri, Daniela</creatorcontrib><title>Restoring fertility in yeast hybrids: Breeding and quantitative genetics of beneficial traits</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Hybrids between species can harbor a combination of beneficial traits from each parent and may exhibit hybrid vigor, more readily adapting to new harsher environments. Interspecies hybrids are also sterile and therefore an evolutionary dead end unless fertility is restored, usually via auto-polyploidisation events. In the Saccharomyces genus, hybrids are readily found in nature and in industrial settings, where they have adapted to severe fermentative conditions. Due to their hybrid sterility, the development of new commercial yeast strains has so far been primarily conducted via selection methods rather than via further breeding. In this study, we overcame infertility by creating tetraploid intermediates of Saccharomyces interspecies hybrids to allow continuous multigenerational breeding. We incorporated nuclear and mitochondrial genetic diversity within each parental species, allowing for quantitative genetic analysis of traits exhibited by the hybrids and for nuclear–mitochondrial interactions to be assessed. Using pooled F12 generation segregants of different hybrids with extreme phenotype distributions, we identified quantitative trait loci (QTLs) for tolerance to high and low temperatures, high sugar concentration, high ethanol concentration, and acetic acid levels. We identified QTLs that are species specific, that are shared between species, as well as hybrid specific, in which the variants do not exhibit phenotypic differences in the original parental species. Moreover, we could distinguish between mitochondria-type–dependent and – independent traits. This study tackles the complexity of the genetic interactions and traits in hybrid species, bringing hybrids into the realm of full genetic analysis of diploid species, and paves the road for the biotechnological exploitation of yeast biodiversity.</description><subject>Acetic acid</subject><subject>Acetic Acid - metabolism</subject><subject>Biodiversity</subject><subject>Biological Sciences</subject><subject>Breeding</subject><subject>Cold Temperature</subject><subject>Diploids</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Evolution</subject><subject>Exploitation</subject><subject>Fermentation - genetics</subject><subject>Fertility</subject><subject>Gene mapping</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>Genetic Variation - genetics</subject><subject>Genetics</subject><subject>Genome, Fungal - genetics</subject><subject>Hybrid vigor</subject><subject>Hybrids</subject><subject>Infertility</subject><subject>Intermediates</subject><subject>Low temperature</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Quantitative genetics</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Saccharomyces</subject><subject>Saccharomyces - genetics</subject><subject>Species</subject><subject>Species diversity</subject><subject>Sterility</subject><subject>Sugars - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkF1LwzAUhoMobk6vvVIKetvt5LPpjSDDLxgIotchTdMtY2tn0gn996ZsTr3KxXnOm_c8CF1iGGPI6GRT6zAmGDBhBGN5hIYYcpwKlsMxGgKQLJWMsAE6C2EJADmXcIoGlHEsCZZDdPtmQ9t4V8-TyvrWrVzbJa5OOqtDmyy6wrsynKOTSq-Cvdi_I_Tx-PA-fU5nr08v0_tZahijbWqJ0YUoDaMMKsYyZkUpaJGbWANkRU1JSpAac05JrqXmpuCZLqjIGeBKEDpCd7vczbZY29LYuvV6pTberbXvVKOd-j-p3ULNmy8lmaBS9gE3-wDffG7jZWrZbH0dOyvCM0FFFk1FarKjjG9C8LY6_IBB9VpVr1X9ao0b13-LHfgfjxG42gHL3uZhHu_OuOAZ_QYQDXzD</recordid><startdate>20210921</startdate><enddate>20210921</enddate><creator>Naseeb, Samina</creator><creator>Visinoni, Federico</creator><creator>Hu, Yue</creator><creator>Roberts, Alex J. Hinks</creator><creator>Maslowska, Agnieszka</creator><creator>Walsh, Thomas</creator><creator>Smart, Katherine A.</creator><creator>Louis, Edward J.</creator><creator>Delneri, Daniela</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9840-7017</orcidid><orcidid>https://orcid.org/0000-0003-1157-3608</orcidid><orcidid>https://orcid.org/0000-0003-3599-5813</orcidid><orcidid>https://orcid.org/0000-0001-8070-411X</orcidid></search><sort><creationdate>20210921</creationdate><title>Restoring fertility in yeast hybrids</title><author>Naseeb, Samina ; Visinoni, Federico ; Hu, Yue ; Roberts, Alex J. Hinks ; Maslowska, Agnieszka ; Walsh, Thomas ; Smart, Katherine A. ; Louis, Edward J. ; Delneri, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-e2cab6dc4340f4474e6d63b9c02708f3cd2d08a155329a8a5cb57ab369401f623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetic acid</topic><topic>Acetic Acid - metabolism</topic><topic>Biodiversity</topic><topic>Biological Sciences</topic><topic>Breeding</topic><topic>Cold Temperature</topic><topic>Diploids</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Evolution</topic><topic>Exploitation</topic><topic>Fermentation - genetics</topic><topic>Fertility</topic><topic>Gene mapping</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>Genetic Variation - genetics</topic><topic>Genetics</topic><topic>Genome, Fungal - genetics</topic><topic>Hybrid vigor</topic><topic>Hybrids</topic><topic>Infertility</topic><topic>Intermediates</topic><topic>Low temperature</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Quantitative genetics</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Saccharomyces</topic><topic>Saccharomyces - genetics</topic><topic>Species</topic><topic>Species diversity</topic><topic>Sterility</topic><topic>Sugars - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naseeb, Samina</creatorcontrib><creatorcontrib>Visinoni, Federico</creatorcontrib><creatorcontrib>Hu, Yue</creatorcontrib><creatorcontrib>Roberts, Alex J. Hinks</creatorcontrib><creatorcontrib>Maslowska, Agnieszka</creatorcontrib><creatorcontrib>Walsh, Thomas</creatorcontrib><creatorcontrib>Smart, Katherine A.</creatorcontrib><creatorcontrib>Louis, Edward J.</creatorcontrib><creatorcontrib>Delneri, Daniela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naseeb, Samina</au><au>Visinoni, Federico</au><au>Hu, Yue</au><au>Roberts, Alex J. Hinks</au><au>Maslowska, Agnieszka</au><au>Walsh, Thomas</au><au>Smart, Katherine A.</au><au>Louis, Edward J.</au><au>Delneri, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Restoring fertility in yeast hybrids: Breeding and quantitative genetics of beneficial traits</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-09-21</date><risdate>2021</risdate><volume>118</volume><issue>38</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Hybrids between species can harbor a combination of beneficial traits from each parent and may exhibit hybrid vigor, more readily adapting to new harsher environments. Interspecies hybrids are also sterile and therefore an evolutionary dead end unless fertility is restored, usually via auto-polyploidisation events. In the Saccharomyces genus, hybrids are readily found in nature and in industrial settings, where they have adapted to severe fermentative conditions. Due to their hybrid sterility, the development of new commercial yeast strains has so far been primarily conducted via selection methods rather than via further breeding. In this study, we overcame infertility by creating tetraploid intermediates of Saccharomyces interspecies hybrids to allow continuous multigenerational breeding. We incorporated nuclear and mitochondrial genetic diversity within each parental species, allowing for quantitative genetic analysis of traits exhibited by the hybrids and for nuclear–mitochondrial interactions to be assessed. Using pooled F12 generation segregants of different hybrids with extreme phenotype distributions, we identified quantitative trait loci (QTLs) for tolerance to high and low temperatures, high sugar concentration, high ethanol concentration, and acetic acid levels. We identified QTLs that are species specific, that are shared between species, as well as hybrid specific, in which the variants do not exhibit phenotypic differences in the original parental species. Moreover, we could distinguish between mitochondria-type–dependent and – independent traits. This study tackles the complexity of the genetic interactions and traits in hybrid species, bringing hybrids into the realm of full genetic analysis of diploid species, and paves the road for the biotechnological exploitation of yeast biodiversity.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34518218</pmid><doi>10.1073/pnas.2101242118</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9840-7017</orcidid><orcidid>https://orcid.org/0000-0003-1157-3608</orcidid><orcidid>https://orcid.org/0000-0003-3599-5813</orcidid><orcidid>https://orcid.org/0000-0001-8070-411X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-09, Vol.118 (38), p.1-12
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8463882
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Acetic acid
Acetic Acid - metabolism
Biodiversity
Biological Sciences
Breeding
Cold Temperature
Diploids
Ethanol
Ethanol - metabolism
Evolution
Exploitation
Fermentation - genetics
Fertility
Gene mapping
Genetic analysis
Genetic diversity
Genetic Variation - genetics
Genetics
Genome, Fungal - genetics
Hybrid vigor
Hybrids
Infertility
Intermediates
Low temperature
Mitochondria
Mitochondria - genetics
Phenotype
Phenotypes
Quantitative genetics
Quantitative trait loci
Quantitative Trait Loci - genetics
Saccharomyces
Saccharomyces - genetics
Species
Species diversity
Sterility
Sugars - metabolism
Yeast
Yeasts
title Restoring fertility in yeast hybrids: Breeding and quantitative genetics of beneficial traits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Restoring%20fertility%20in%20yeast%20hybrids:%20Breeding%20and%20quantitative%20genetics%20of%20beneficial%20traits&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Naseeb,%20Samina&rft.date=2021-09-21&rft.volume=118&rft.issue=38&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2101242118&rft_dat=%3Cjstor_pubme%3E27075657%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-e2cab6dc4340f4474e6d63b9c02708f3cd2d08a155329a8a5cb57ab369401f623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576367012&rft_id=info:pmid/34518218&rft_jstor_id=27075657&rfr_iscdi=true