Loading…

The Open Cell Form of 3D-Printed Titanium Improves Osteconductive Properties and Adhesion Behavior of Dental Pulp Stem Cells

Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo-integration. To improve the bioactivity and develop customized implants titanium, the surface can be modified with selective laser melting (SLM). Moreover, the design of macro-porous structures has beco...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2021-09, Vol.14 (18), p.5308
Main Authors: Gallorini, Marialucia, Zara, Susi, Ricci, Alessia, Mangano, Francesco Guido, Cataldi, Amelia, Mangano, Carlo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-4d66e906677c12e263ca8f7f17914dc5f1cd386f0b80a018060493ed4b7b77743
cites cdi_FETCH-LOGICAL-c383t-4d66e906677c12e263ca8f7f17914dc5f1cd386f0b80a018060493ed4b7b77743
container_end_page
container_issue 18
container_start_page 5308
container_title Materials
container_volume 14
creator Gallorini, Marialucia
Zara, Susi
Ricci, Alessia
Mangano, Francesco Guido
Cataldi, Amelia
Mangano, Carlo
description Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo-integration. To improve the bioactivity and develop customized implants titanium, the surface can be modified with selective laser melting (SLM). Moreover, the design of macro-porous structures has become popular for reaching a durable bone fixation. 3D-printed titanium (Titanium A, B, and C), were cleaned using an organic acid treatment or with electrochemical polishing, and were characterized in terms of their surface morphology using scanning electron microscopy. Next, Dental Pulp Stem Cells (DPSCs) were cultured on titanium in order to analyze their biocompatibility, cell adhesion, and osteoconductive properties. All tested specimens were biocompatible, due to the time-dependent increase of DPSC proliferation paralleled by the decrease of LDH released. Furthermore, data highlighted that the open cell form with interconnected pores of titanium A, resembling the inner structure of the native bone, allows cells to better adhere inside the specimen, being proteins related to cell adherence highly expressed. Likewise, titanium A displays more suitable osteoconductive properties, being the profile of osteogenic markers improved compared to titanium B and C. The present work has demonstrated that the inner design and post-production treatments on titanium surfaces have a dynamic influence on DPSC behavior toward adhesion and osteogenic commitment.
doi_str_mv 10.3390/ma14185308
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8467079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576462772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-4d66e906677c12e263ca8f7f17914dc5f1cd386f0b80a018060493ed4b7b77743</originalsourceid><addsrcrecordid>eNpdkdFrFDEQxoMottS--BcEfBFhbbLJJpsXoV6tFgp34Pkccsmsl7KbrEn2oOAfb84Wrc7LDMyP7_uGQeg1Je8ZU-RiMpTTvmOkf4ZOqVKioYrz50_mE3Se8x2pxRjtW_USnTDeSdGx9hT93O4Br2cIeAXjiK9jmnAcMLtqNsmHAg5vfTHBLxO-meYUD5DxOhewMbjFFn8AvElxhlR83Zjg8KXbQ_Yx4I-wNwcf01HvCkIxI94s44y_Fph-u-VX6MVgxgznj_0Mfbv-tF19aW7Xn29Wl7eNZT0rDXdCgCJCSGlpC61g1vSDHKhUlDvbDdQ61ouB7HpiCO2JIFwxcHwnd1JKzs7QhwfdedlN4GwNk8yo5-Qnk-51NF7_uwl-r7_Hg-65kESqKvD2USDFHwvkoiefbT3BBIhL1m1XbbiSjFb0zX_oXVxSqOcdKcFFK2VbqXcPlE0x5wTDnzCU6ONf9d-_sl9FzpN6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576462772</pqid></control><display><type>article</type><title>The Open Cell Form of 3D-Printed Titanium Improves Osteconductive Properties and Adhesion Behavior of Dental Pulp Stem Cells</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gallorini, Marialucia ; Zara, Susi ; Ricci, Alessia ; Mangano, Francesco Guido ; Cataldi, Amelia ; Mangano, Carlo</creator><creatorcontrib>Gallorini, Marialucia ; Zara, Susi ; Ricci, Alessia ; Mangano, Francesco Guido ; Cataldi, Amelia ; Mangano, Carlo</creatorcontrib><description>Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo-integration. To improve the bioactivity and develop customized implants titanium, the surface can be modified with selective laser melting (SLM). Moreover, the design of macro-porous structures has become popular for reaching a durable bone fixation. 3D-printed titanium (Titanium A, B, and C), were cleaned using an organic acid treatment or with electrochemical polishing, and were characterized in terms of their surface morphology using scanning electron microscopy. Next, Dental Pulp Stem Cells (DPSCs) were cultured on titanium in order to analyze their biocompatibility, cell adhesion, and osteoconductive properties. All tested specimens were biocompatible, due to the time-dependent increase of DPSC proliferation paralleled by the decrease of LDH released. Furthermore, data highlighted that the open cell form with interconnected pores of titanium A, resembling the inner structure of the native bone, allows cells to better adhere inside the specimen, being proteins related to cell adherence highly expressed. Likewise, titanium A displays more suitable osteoconductive properties, being the profile of osteogenic markers improved compared to titanium B and C. The present work has demonstrated that the inner design and post-production treatments on titanium surfaces have a dynamic influence on DPSC behavior toward adhesion and osteogenic commitment.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14185308</identifier><identifier>PMID: 34576532</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Additive manufacturing ; Aluminum ; Biocompatibility ; Biomedical materials ; Cell adhesion ; Chemical polishing ; Dental implants ; Dental pulp ; Design modifications ; Electropolishing ; Laser beam melting ; Lasers ; Morphology ; Open cell porosity ; Rapid prototyping ; Stem cells ; Surgical implants ; Three dimensional printing ; Titanium</subject><ispartof>Materials, 2021-09, Vol.14 (18), p.5308</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-4d66e906677c12e263ca8f7f17914dc5f1cd386f0b80a018060493ed4b7b77743</citedby><cites>FETCH-LOGICAL-c383t-4d66e906677c12e263ca8f7f17914dc5f1cd386f0b80a018060493ed4b7b77743</cites><orcidid>0000-0003-1705-6943 ; 0000-0001-5488-4268 ; 0000-0002-2283-4159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576462772/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576462772?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Gallorini, Marialucia</creatorcontrib><creatorcontrib>Zara, Susi</creatorcontrib><creatorcontrib>Ricci, Alessia</creatorcontrib><creatorcontrib>Mangano, Francesco Guido</creatorcontrib><creatorcontrib>Cataldi, Amelia</creatorcontrib><creatorcontrib>Mangano, Carlo</creatorcontrib><title>The Open Cell Form of 3D-Printed Titanium Improves Osteconductive Properties and Adhesion Behavior of Dental Pulp Stem Cells</title><title>Materials</title><description>Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo-integration. To improve the bioactivity and develop customized implants titanium, the surface can be modified with selective laser melting (SLM). Moreover, the design of macro-porous structures has become popular for reaching a durable bone fixation. 3D-printed titanium (Titanium A, B, and C), were cleaned using an organic acid treatment or with electrochemical polishing, and were characterized in terms of their surface morphology using scanning electron microscopy. Next, Dental Pulp Stem Cells (DPSCs) were cultured on titanium in order to analyze their biocompatibility, cell adhesion, and osteoconductive properties. All tested specimens were biocompatible, due to the time-dependent increase of DPSC proliferation paralleled by the decrease of LDH released. Furthermore, data highlighted that the open cell form with interconnected pores of titanium A, resembling the inner structure of the native bone, allows cells to better adhere inside the specimen, being proteins related to cell adherence highly expressed. Likewise, titanium A displays more suitable osteoconductive properties, being the profile of osteogenic markers improved compared to titanium B and C. The present work has demonstrated that the inner design and post-production treatments on titanium surfaces have a dynamic influence on DPSC behavior toward adhesion and osteogenic commitment.</description><subject>Acids</subject><subject>Additive manufacturing</subject><subject>Aluminum</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Cell adhesion</subject><subject>Chemical polishing</subject><subject>Dental implants</subject><subject>Dental pulp</subject><subject>Design modifications</subject><subject>Electropolishing</subject><subject>Laser beam melting</subject><subject>Lasers</subject><subject>Morphology</subject><subject>Open cell porosity</subject><subject>Rapid prototyping</subject><subject>Stem cells</subject><subject>Surgical implants</subject><subject>Three dimensional printing</subject><subject>Titanium</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkdFrFDEQxoMottS--BcEfBFhbbLJJpsXoV6tFgp34Pkccsmsl7KbrEn2oOAfb84Wrc7LDMyP7_uGQeg1Je8ZU-RiMpTTvmOkf4ZOqVKioYrz50_mE3Se8x2pxRjtW_USnTDeSdGx9hT93O4Br2cIeAXjiK9jmnAcMLtqNsmHAg5vfTHBLxO-meYUD5DxOhewMbjFFn8AvElxhlR83Zjg8KXbQ_Yx4I-wNwcf01HvCkIxI94s44y_Fph-u-VX6MVgxgznj_0Mfbv-tF19aW7Xn29Wl7eNZT0rDXdCgCJCSGlpC61g1vSDHKhUlDvbDdQ61ouB7HpiCO2JIFwxcHwnd1JKzs7QhwfdedlN4GwNk8yo5-Qnk-51NF7_uwl-r7_Hg-65kESqKvD2USDFHwvkoiefbT3BBIhL1m1XbbiSjFb0zX_oXVxSqOcdKcFFK2VbqXcPlE0x5wTDnzCU6ONf9d-_sl9FzpN6</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Gallorini, Marialucia</creator><creator>Zara, Susi</creator><creator>Ricci, Alessia</creator><creator>Mangano, Francesco Guido</creator><creator>Cataldi, Amelia</creator><creator>Mangano, Carlo</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1705-6943</orcidid><orcidid>https://orcid.org/0000-0001-5488-4268</orcidid><orcidid>https://orcid.org/0000-0002-2283-4159</orcidid></search><sort><creationdate>20210915</creationdate><title>The Open Cell Form of 3D-Printed Titanium Improves Osteconductive Properties and Adhesion Behavior of Dental Pulp Stem Cells</title><author>Gallorini, Marialucia ; Zara, Susi ; Ricci, Alessia ; Mangano, Francesco Guido ; Cataldi, Amelia ; Mangano, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-4d66e906677c12e263ca8f7f17914dc5f1cd386f0b80a018060493ed4b7b77743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acids</topic><topic>Additive manufacturing</topic><topic>Aluminum</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Cell adhesion</topic><topic>Chemical polishing</topic><topic>Dental implants</topic><topic>Dental pulp</topic><topic>Design modifications</topic><topic>Electropolishing</topic><topic>Laser beam melting</topic><topic>Lasers</topic><topic>Morphology</topic><topic>Open cell porosity</topic><topic>Rapid prototyping</topic><topic>Stem cells</topic><topic>Surgical implants</topic><topic>Three dimensional printing</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallorini, Marialucia</creatorcontrib><creatorcontrib>Zara, Susi</creatorcontrib><creatorcontrib>Ricci, Alessia</creatorcontrib><creatorcontrib>Mangano, Francesco Guido</creatorcontrib><creatorcontrib>Cataldi, Amelia</creatorcontrib><creatorcontrib>Mangano, Carlo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallorini, Marialucia</au><au>Zara, Susi</au><au>Ricci, Alessia</au><au>Mangano, Francesco Guido</au><au>Cataldi, Amelia</au><au>Mangano, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Open Cell Form of 3D-Printed Titanium Improves Osteconductive Properties and Adhesion Behavior of Dental Pulp Stem Cells</atitle><jtitle>Materials</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>14</volume><issue>18</issue><spage>5308</spage><pages>5308-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo-integration. To improve the bioactivity and develop customized implants titanium, the surface can be modified with selective laser melting (SLM). Moreover, the design of macro-porous structures has become popular for reaching a durable bone fixation. 3D-printed titanium (Titanium A, B, and C), were cleaned using an organic acid treatment or with electrochemical polishing, and were characterized in terms of their surface morphology using scanning electron microscopy. Next, Dental Pulp Stem Cells (DPSCs) were cultured on titanium in order to analyze their biocompatibility, cell adhesion, and osteoconductive properties. All tested specimens were biocompatible, due to the time-dependent increase of DPSC proliferation paralleled by the decrease of LDH released. Furthermore, data highlighted that the open cell form with interconnected pores of titanium A, resembling the inner structure of the native bone, allows cells to better adhere inside the specimen, being proteins related to cell adherence highly expressed. Likewise, titanium A displays more suitable osteoconductive properties, being the profile of osteogenic markers improved compared to titanium B and C. The present work has demonstrated that the inner design and post-production treatments on titanium surfaces have a dynamic influence on DPSC behavior toward adhesion and osteogenic commitment.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34576532</pmid><doi>10.3390/ma14185308</doi><orcidid>https://orcid.org/0000-0003-1705-6943</orcidid><orcidid>https://orcid.org/0000-0001-5488-4268</orcidid><orcidid>https://orcid.org/0000-0002-2283-4159</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-09, Vol.14 (18), p.5308
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8467079
source Publicly Available Content (ProQuest); PubMed Central; Free Full-Text Journals in Chemistry
subjects Acids
Additive manufacturing
Aluminum
Biocompatibility
Biomedical materials
Cell adhesion
Chemical polishing
Dental implants
Dental pulp
Design modifications
Electropolishing
Laser beam melting
Lasers
Morphology
Open cell porosity
Rapid prototyping
Stem cells
Surgical implants
Three dimensional printing
Titanium
title The Open Cell Form of 3D-Printed Titanium Improves Osteconductive Properties and Adhesion Behavior of Dental Pulp Stem Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Open%20Cell%20Form%20of%203D-Printed%20Titanium%20Improves%20Osteconductive%20Properties%20and%20Adhesion%20Behavior%20of%20Dental%20Pulp%20Stem%20Cells&rft.jtitle=Materials&rft.au=Gallorini,%20Marialucia&rft.date=2021-09-15&rft.volume=14&rft.issue=18&rft.spage=5308&rft.pages=5308-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14185308&rft_dat=%3Cproquest_pubme%3E2576462772%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-4d66e906677c12e263ca8f7f17914dc5f1cd386f0b80a018060493ed4b7b77743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576462772&rft_id=info:pmid/34576532&rfr_iscdi=true