Loading…
The Open Cell Form of 3D-Printed Titanium Improves Osteconductive Properties and Adhesion Behavior of Dental Pulp Stem Cells
Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo-integration. To improve the bioactivity and develop customized implants titanium, the surface can be modified with selective laser melting (SLM). Moreover, the design of macro-porous structures has beco...
Saved in:
Published in: | Materials 2021-09, Vol.14 (18), p.5308 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-4d66e906677c12e263ca8f7f17914dc5f1cd386f0b80a018060493ed4b7b77743 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-4d66e906677c12e263ca8f7f17914dc5f1cd386f0b80a018060493ed4b7b77743 |
container_end_page | |
container_issue | 18 |
container_start_page | 5308 |
container_title | Materials |
container_volume | 14 |
creator | Gallorini, Marialucia Zara, Susi Ricci, Alessia Mangano, Francesco Guido Cataldi, Amelia Mangano, Carlo |
description | Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo-integration. To improve the bioactivity and develop customized implants titanium, the surface can be modified with selective laser melting (SLM). Moreover, the design of macro-porous structures has become popular for reaching a durable bone fixation. 3D-printed titanium (Titanium A, B, and C), were cleaned using an organic acid treatment or with electrochemical polishing, and were characterized in terms of their surface morphology using scanning electron microscopy. Next, Dental Pulp Stem Cells (DPSCs) were cultured on titanium in order to analyze their biocompatibility, cell adhesion, and osteoconductive properties. All tested specimens were biocompatible, due to the time-dependent increase of DPSC proliferation paralleled by the decrease of LDH released. Furthermore, data highlighted that the open cell form with interconnected pores of titanium A, resembling the inner structure of the native bone, allows cells to better adhere inside the specimen, being proteins related to cell adherence highly expressed. Likewise, titanium A displays more suitable osteoconductive properties, being the profile of osteogenic markers improved compared to titanium B and C. The present work has demonstrated that the inner design and post-production treatments on titanium surfaces have a dynamic influence on DPSC behavior toward adhesion and osteogenic commitment. |
doi_str_mv | 10.3390/ma14185308 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8467079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576462772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-4d66e906677c12e263ca8f7f17914dc5f1cd386f0b80a018060493ed4b7b77743</originalsourceid><addsrcrecordid>eNpdkdFrFDEQxoMottS--BcEfBFhbbLJJpsXoV6tFgp34Pkccsmsl7KbrEn2oOAfb84Wrc7LDMyP7_uGQeg1Je8ZU-RiMpTTvmOkf4ZOqVKioYrz50_mE3Se8x2pxRjtW_USnTDeSdGx9hT93O4Br2cIeAXjiK9jmnAcMLtqNsmHAg5vfTHBLxO-meYUD5DxOhewMbjFFn8AvElxhlR83Zjg8KXbQ_Yx4I-wNwcf01HvCkIxI94s44y_Fph-u-VX6MVgxgznj_0Mfbv-tF19aW7Xn29Wl7eNZT0rDXdCgCJCSGlpC61g1vSDHKhUlDvbDdQ61ouB7HpiCO2JIFwxcHwnd1JKzs7QhwfdedlN4GwNk8yo5-Qnk-51NF7_uwl-r7_Hg-65kESqKvD2USDFHwvkoiefbT3BBIhL1m1XbbiSjFb0zX_oXVxSqOcdKcFFK2VbqXcPlE0x5wTDnzCU6ONf9d-_sl9FzpN6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576462772</pqid></control><display><type>article</type><title>The Open Cell Form of 3D-Printed Titanium Improves Osteconductive Properties and Adhesion Behavior of Dental Pulp Stem Cells</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gallorini, Marialucia ; Zara, Susi ; Ricci, Alessia ; Mangano, Francesco Guido ; Cataldi, Amelia ; Mangano, Carlo</creator><creatorcontrib>Gallorini, Marialucia ; Zara, Susi ; Ricci, Alessia ; Mangano, Francesco Guido ; Cataldi, Amelia ; Mangano, Carlo</creatorcontrib><description>Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo-integration. To improve the bioactivity and develop customized implants titanium, the surface can be modified with selective laser melting (SLM). Moreover, the design of macro-porous structures has become popular for reaching a durable bone fixation. 3D-printed titanium (Titanium A, B, and C), were cleaned using an organic acid treatment or with electrochemical polishing, and were characterized in terms of their surface morphology using scanning electron microscopy. Next, Dental Pulp Stem Cells (DPSCs) were cultured on titanium in order to analyze their biocompatibility, cell adhesion, and osteoconductive properties. All tested specimens were biocompatible, due to the time-dependent increase of DPSC proliferation paralleled by the decrease of LDH released. Furthermore, data highlighted that the open cell form with interconnected pores of titanium A, resembling the inner structure of the native bone, allows cells to better adhere inside the specimen, being proteins related to cell adherence highly expressed. Likewise, titanium A displays more suitable osteoconductive properties, being the profile of osteogenic markers improved compared to titanium B and C. The present work has demonstrated that the inner design and post-production treatments on titanium surfaces have a dynamic influence on DPSC behavior toward adhesion and osteogenic commitment.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14185308</identifier><identifier>PMID: 34576532</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Additive manufacturing ; Aluminum ; Biocompatibility ; Biomedical materials ; Cell adhesion ; Chemical polishing ; Dental implants ; Dental pulp ; Design modifications ; Electropolishing ; Laser beam melting ; Lasers ; Morphology ; Open cell porosity ; Rapid prototyping ; Stem cells ; Surgical implants ; Three dimensional printing ; Titanium</subject><ispartof>Materials, 2021-09, Vol.14 (18), p.5308</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-4d66e906677c12e263ca8f7f17914dc5f1cd386f0b80a018060493ed4b7b77743</citedby><cites>FETCH-LOGICAL-c383t-4d66e906677c12e263ca8f7f17914dc5f1cd386f0b80a018060493ed4b7b77743</cites><orcidid>0000-0003-1705-6943 ; 0000-0001-5488-4268 ; 0000-0002-2283-4159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576462772/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576462772?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Gallorini, Marialucia</creatorcontrib><creatorcontrib>Zara, Susi</creatorcontrib><creatorcontrib>Ricci, Alessia</creatorcontrib><creatorcontrib>Mangano, Francesco Guido</creatorcontrib><creatorcontrib>Cataldi, Amelia</creatorcontrib><creatorcontrib>Mangano, Carlo</creatorcontrib><title>The Open Cell Form of 3D-Printed Titanium Improves Osteconductive Properties and Adhesion Behavior of Dental Pulp Stem Cells</title><title>Materials</title><description>Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo-integration. To improve the bioactivity and develop customized implants titanium, the surface can be modified with selective laser melting (SLM). Moreover, the design of macro-porous structures has become popular for reaching a durable bone fixation. 3D-printed titanium (Titanium A, B, and C), were cleaned using an organic acid treatment or with electrochemical polishing, and were characterized in terms of their surface morphology using scanning electron microscopy. Next, Dental Pulp Stem Cells (DPSCs) were cultured on titanium in order to analyze their biocompatibility, cell adhesion, and osteoconductive properties. All tested specimens were biocompatible, due to the time-dependent increase of DPSC proliferation paralleled by the decrease of LDH released. Furthermore, data highlighted that the open cell form with interconnected pores of titanium A, resembling the inner structure of the native bone, allows cells to better adhere inside the specimen, being proteins related to cell adherence highly expressed. Likewise, titanium A displays more suitable osteoconductive properties, being the profile of osteogenic markers improved compared to titanium B and C. The present work has demonstrated that the inner design and post-production treatments on titanium surfaces have a dynamic influence on DPSC behavior toward adhesion and osteogenic commitment.</description><subject>Acids</subject><subject>Additive manufacturing</subject><subject>Aluminum</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Cell adhesion</subject><subject>Chemical polishing</subject><subject>Dental implants</subject><subject>Dental pulp</subject><subject>Design modifications</subject><subject>Electropolishing</subject><subject>Laser beam melting</subject><subject>Lasers</subject><subject>Morphology</subject><subject>Open cell porosity</subject><subject>Rapid prototyping</subject><subject>Stem cells</subject><subject>Surgical implants</subject><subject>Three dimensional printing</subject><subject>Titanium</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkdFrFDEQxoMottS--BcEfBFhbbLJJpsXoV6tFgp34Pkccsmsl7KbrEn2oOAfb84Wrc7LDMyP7_uGQeg1Je8ZU-RiMpTTvmOkf4ZOqVKioYrz50_mE3Se8x2pxRjtW_USnTDeSdGx9hT93O4Br2cIeAXjiK9jmnAcMLtqNsmHAg5vfTHBLxO-meYUD5DxOhewMbjFFn8AvElxhlR83Zjg8KXbQ_Yx4I-wNwcf01HvCkIxI94s44y_Fph-u-VX6MVgxgznj_0Mfbv-tF19aW7Xn29Wl7eNZT0rDXdCgCJCSGlpC61g1vSDHKhUlDvbDdQ61ouB7HpiCO2JIFwxcHwnd1JKzs7QhwfdedlN4GwNk8yo5-Qnk-51NF7_uwl-r7_Hg-65kESqKvD2USDFHwvkoiefbT3BBIhL1m1XbbiSjFb0zX_oXVxSqOcdKcFFK2VbqXcPlE0x5wTDnzCU6ONf9d-_sl9FzpN6</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Gallorini, Marialucia</creator><creator>Zara, Susi</creator><creator>Ricci, Alessia</creator><creator>Mangano, Francesco Guido</creator><creator>Cataldi, Amelia</creator><creator>Mangano, Carlo</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1705-6943</orcidid><orcidid>https://orcid.org/0000-0001-5488-4268</orcidid><orcidid>https://orcid.org/0000-0002-2283-4159</orcidid></search><sort><creationdate>20210915</creationdate><title>The Open Cell Form of 3D-Printed Titanium Improves Osteconductive Properties and Adhesion Behavior of Dental Pulp Stem Cells</title><author>Gallorini, Marialucia ; Zara, Susi ; Ricci, Alessia ; Mangano, Francesco Guido ; Cataldi, Amelia ; Mangano, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-4d66e906677c12e263ca8f7f17914dc5f1cd386f0b80a018060493ed4b7b77743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acids</topic><topic>Additive manufacturing</topic><topic>Aluminum</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Cell adhesion</topic><topic>Chemical polishing</topic><topic>Dental implants</topic><topic>Dental pulp</topic><topic>Design modifications</topic><topic>Electropolishing</topic><topic>Laser beam melting</topic><topic>Lasers</topic><topic>Morphology</topic><topic>Open cell porosity</topic><topic>Rapid prototyping</topic><topic>Stem cells</topic><topic>Surgical implants</topic><topic>Three dimensional printing</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallorini, Marialucia</creatorcontrib><creatorcontrib>Zara, Susi</creatorcontrib><creatorcontrib>Ricci, Alessia</creatorcontrib><creatorcontrib>Mangano, Francesco Guido</creatorcontrib><creatorcontrib>Cataldi, Amelia</creatorcontrib><creatorcontrib>Mangano, Carlo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallorini, Marialucia</au><au>Zara, Susi</au><au>Ricci, Alessia</au><au>Mangano, Francesco Guido</au><au>Cataldi, Amelia</au><au>Mangano, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Open Cell Form of 3D-Printed Titanium Improves Osteconductive Properties and Adhesion Behavior of Dental Pulp Stem Cells</atitle><jtitle>Materials</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>14</volume><issue>18</issue><spage>5308</spage><pages>5308-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Titanium specimens have been proven to be safe and effective biomaterials in terms of their osseo-integration. To improve the bioactivity and develop customized implants titanium, the surface can be modified with selective laser melting (SLM). Moreover, the design of macro-porous structures has become popular for reaching a durable bone fixation. 3D-printed titanium (Titanium A, B, and C), were cleaned using an organic acid treatment or with electrochemical polishing, and were characterized in terms of their surface morphology using scanning electron microscopy. Next, Dental Pulp Stem Cells (DPSCs) were cultured on titanium in order to analyze their biocompatibility, cell adhesion, and osteoconductive properties. All tested specimens were biocompatible, due to the time-dependent increase of DPSC proliferation paralleled by the decrease of LDH released. Furthermore, data highlighted that the open cell form with interconnected pores of titanium A, resembling the inner structure of the native bone, allows cells to better adhere inside the specimen, being proteins related to cell adherence highly expressed. Likewise, titanium A displays more suitable osteoconductive properties, being the profile of osteogenic markers improved compared to titanium B and C. The present work has demonstrated that the inner design and post-production treatments on titanium surfaces have a dynamic influence on DPSC behavior toward adhesion and osteogenic commitment.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34576532</pmid><doi>10.3390/ma14185308</doi><orcidid>https://orcid.org/0000-0003-1705-6943</orcidid><orcidid>https://orcid.org/0000-0001-5488-4268</orcidid><orcidid>https://orcid.org/0000-0002-2283-4159</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-09, Vol.14 (18), p.5308 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8467079 |
source | Publicly Available Content (ProQuest); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acids Additive manufacturing Aluminum Biocompatibility Biomedical materials Cell adhesion Chemical polishing Dental implants Dental pulp Design modifications Electropolishing Laser beam melting Lasers Morphology Open cell porosity Rapid prototyping Stem cells Surgical implants Three dimensional printing Titanium |
title | The Open Cell Form of 3D-Printed Titanium Improves Osteconductive Properties and Adhesion Behavior of Dental Pulp Stem Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Open%20Cell%20Form%20of%203D-Printed%20Titanium%20Improves%20Osteconductive%20Properties%20and%20Adhesion%20Behavior%20of%20Dental%20Pulp%20Stem%20Cells&rft.jtitle=Materials&rft.au=Gallorini,%20Marialucia&rft.date=2021-09-15&rft.volume=14&rft.issue=18&rft.spage=5308&rft.pages=5308-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14185308&rft_dat=%3Cproquest_pubme%3E2576462772%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-4d66e906677c12e263ca8f7f17914dc5f1cd386f0b80a018060493ed4b7b77743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576462772&rft_id=info:pmid/34576532&rfr_iscdi=true |