Loading…
Nonedible Vegetable Oil-Based Polyols in Anticorrosive and Antimicrobial Polyurethane Coatings
This review describes the preparation of nonedible vegetable oil (NEVO)-based polyols and their application in anticorrosive and antimicrobial polyurethane (PU) coatings. PUs are a class of versatile polymers made up of polyols and isocyanates. Renewable vegetable oils are promising resources for th...
Saved in:
Published in: | Polymers 2021-09, Vol.13 (18), p.3149 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This review describes the preparation of nonedible vegetable oil (NEVO)-based polyols and their application in anticorrosive and antimicrobial polyurethane (PU) coatings. PUs are a class of versatile polymers made up of polyols and isocyanates. Renewable vegetable oils are promising resources for the development of ecofriendly polyols and the corresponding PUs. Researchers are interested in NEVOs because they provide an alternative to critical global food issues. The cultivation of plant resources for NEVOs can also be popularized globally by utilizing marginal land or wastelands. Polyols can be prepared from NEVOs following different conversion routes, including esterification, etherification, amidation, ozonolysis, hydrogenation, hydroformylation, thio-ene, acrylation, and epoxidation. These polyols can be incorporated into the PU network for coating applications. Metal surface corrosion and microbial growth are severe problems that cause enormous economic losses annually. These problems can be overcome by NEVO-based PU coatings, incorporating functional ingredients such as corrosion inhibitors and antimicrobial agents. The preferred coatings have great potential in high performance, smart, and functional applications, including in biomedical fields, to cope with emerging threats such as COVID-19. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym13183149 |