Loading…
Propagation of waves in high Brillouin zones: Chaotic branched flow and stable superwires
We report unexpected classical and quantum dynamics of a wave propagating in a periodic potential in high Brillouin zones. Branched flow appears at wavelengths shorter than the typical length scale of the ordered periodic structure and for energies above the potential barrier. The strongest branches...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2021-10, Vol.118 (40), p.1-7 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report unexpected classical and quantum dynamics of a wave propagating in a periodic potential in high Brillouin zones. Branched flow appears at wavelengths shorter than the typical length scale of the ordered periodic structure and for energies above the potential barrier. The strongest branches remain stable indefinitely and may create linear dynamical channels, wherein waves are not confined directly by potential walls as electrons in ordinary wires but rather, indirectly and more subtly by dynamical stability. We term these superwires since they are associated with a superlattice. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.2110285118 |