Loading…
Boosting Long-Term Stability of Pure Formamidinium Perovskite Solar Cells by Ambient Air Additive Assisted Fabrication
Due to the high industrial interest for perovskite-based photovoltaic devices, there is an urgent need to fabricate them under ambient atmosphere, not limited to low relative humidity (RH) conditions. The formamidinium lead iodide (FAPI) perovskite α-black phase is not stable at room temperature and...
Saved in:
Published in: | ACS energy letters 2021-10, Vol.6 (10), p.3511-3521 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to the high industrial interest for perovskite-based photovoltaic devices, there is an urgent need to fabricate them under ambient atmosphere, not limited to low relative humidity (RH) conditions. The formamidinium lead iodide (FAPI) perovskite α-black phase is not stable at room temperature and is challenging to stabilize in an ambient environment. In this work, we show that pure FAPI perovskite solar cells (PSCs) have a dramatic increase of device long-term stability when prepared under ambient air compared to FAPI PSCs made under nitrogen, both fabricated with N-methylpyrrolidone (NMP). The T 80 parameter, the time in which the efficiency drops to 80% of the initial value, increases from 21 (in N2) to 112 days (in ambient) to 145 days if PbS quantum dots (QDs) are introduced as additives in air-prepared FAPI PSCs. Furthermore, by adding methylammonium chloride (MACl) the power conversion efficiency (PCE) reaches 19.4% and devices maintain 100% of the original performance for at least 53 days. The presence of Pb–O bonds only in the FAPI films prepared in ambient conditions blocks the propagation of α- to δ-FAPI phase conversion. Thus, these results open the way to a new strategy for the stabilization in ambient air toward perovskite solar cells commercialization. |
---|---|
ISSN: | 2380-8195 2380-8195 |
DOI: | 10.1021/acsenergylett.1c01311 |