Loading…
Physical, Mechanical, and Morphological Properties of Hybrid Cyrtostachys renda/Kenaf Fiber Reinforced with Multi-Walled Carbon Nanotubes (MWCNT)-Phenolic Composites
Adequate awareness of sustainable materials and eco-legislation have inspired researchers to identify alternative sustainable and green composites for synthetic fiber-reinforced polymer composites in the automotive and aircraft industries. This research focused on investigating the physical, mechani...
Saved in:
Published in: | Polymers 2021-10, Vol.13 (19), p.3448 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-76df2e56a1d0be0e360a955276760c27f62b8190481e83e1117eb20c3cb4fb823 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-76df2e56a1d0be0e360a955276760c27f62b8190481e83e1117eb20c3cb4fb823 |
container_end_page | |
container_issue | 19 |
container_start_page | 3448 |
container_title | Polymers |
container_volume | 13 |
creator | Loganathan, Tamil Moli Hameed Sultan, Mohamed Thariq Jawaid, Mohammad Ahsan, Qumrul Naveen, Jesuarockiam Shah, Ain Umaira Md Abu Talib, Abd. Rahim Basri, Adi Azriff |
description | Adequate awareness of sustainable materials and eco-legislation have inspired researchers to identify alternative sustainable and green composites for synthetic fiber-reinforced polymer composites in the automotive and aircraft industries. This research focused on investigating the physical, mechanical, and morphological properties of different hybrid Cyrtostachys renda (CR)/kenaf fiber (K) (10C:0K, 7C:3K, 5C:5K, 3C:7K, 0C:10K) reinforced with 0.5 wt% MWCNT–phenolic composites. We incorporated 0.5 wt% of MWCNT into phenolic resin (powder) using a ball milling process for 25 h to achieve homogeneous distribution. The results revealed that CR fiber composites showed higher voids content (12.23%) than pure kenaf fiber composites (6.57%). CR fiber phenolic composite was more stable to the swelling tendency, resulting in the lowest percentage of swelling rate (4.11%) compared to kenaf composite (5.29%). The addition of kenaf fiber into CR composites had improved the tensile, flexural, and impact properties. The highest tensile and flexural properties were found for weight fraction of CR and kenaf fiber at 5C:5K (47.96 MPa) and 3C:7K (90.89 MPa) composites, respectively. In contrast, the highest impact properties were obtained for 0C:10K composites (9.56 kJ/m2). Based on the FE-SEM image, the CR fiber lumen was larger in comparison to kenaf fiber. The lumen of CR fiber was attributed to higher void and water absorption, lower mechanical properties compared to kenaf fiber. 5C:5K composite was selected as an optimal hybrid composite, based on the TOPSIS method. This hybrid composite can be used as an interior component (non-load-bearing structures) in the aviation and automotive sectors. |
doi_str_mv | 10.3390/polym13193448 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581802300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-76df2e56a1d0be0e360a955276760c27f62b8190481e83e1117eb20c3cb4fb823</originalsourceid><addsrcrecordid>eNpdkl9r1UAQxYMottQ--r7gSwVj90-ySV4ECdaKvfUilT6G3c2k2bJ3J-5ulHwgv6e53iLWeZnDmcOPGZgse8noWyEaej6hW3ZMsEYURf0kO-a0EnkhJH36jz7KTmO8p2sVpZSsep4diUIWjEtxnP3ajku0Rrk3ZANmVP6gle_JBsM0osO7vUW2AScIyUIkOJDLRQfbk3YJCWNSZoWQAL5X55_Bq4FcWA2BfAXrBwwGevLTppFsZpdsfqucW51WBY2eXCuPadYr9mxz217fvM63I3h01pAWdxNGmyC-yJ4NykU4fegn2beLDzftZX715eOn9v1VbkTDU17JfuBQSsV6qoHCerxqypJXspLU8GqQXNesoUXNoBbAGKtAc2qE0cWgay5OsncH7jTrHfQGfArKdVOwOxWWDpXtHk-8Hbs7_NHVJeOMFyvg7AEQ8PsMMXU7Gw04pzzgHDte1qymXFC6Rl_9F73HOfj1vD8pyiSVe2B-SJmAMQYY_i7DaLf_ge7RD4jf3aClnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581016064</pqid></control><display><type>article</type><title>Physical, Mechanical, and Morphological Properties of Hybrid Cyrtostachys renda/Kenaf Fiber Reinforced with Multi-Walled Carbon Nanotubes (MWCNT)-Phenolic Composites</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Loganathan, Tamil Moli ; Hameed Sultan, Mohamed Thariq ; Jawaid, Mohammad ; Ahsan, Qumrul ; Naveen, Jesuarockiam ; Shah, Ain Umaira Md ; Abu Talib, Abd. Rahim ; Basri, Adi Azriff</creator><creatorcontrib>Loganathan, Tamil Moli ; Hameed Sultan, Mohamed Thariq ; Jawaid, Mohammad ; Ahsan, Qumrul ; Naveen, Jesuarockiam ; Shah, Ain Umaira Md ; Abu Talib, Abd. Rahim ; Basri, Adi Azriff</creatorcontrib><description>Adequate awareness of sustainable materials and eco-legislation have inspired researchers to identify alternative sustainable and green composites for synthetic fiber-reinforced polymer composites in the automotive and aircraft industries. This research focused on investigating the physical, mechanical, and morphological properties of different hybrid Cyrtostachys renda (CR)/kenaf fiber (K) (10C:0K, 7C:3K, 5C:5K, 3C:7K, 0C:10K) reinforced with 0.5 wt% MWCNT–phenolic composites. We incorporated 0.5 wt% of MWCNT into phenolic resin (powder) using a ball milling process for 25 h to achieve homogeneous distribution. The results revealed that CR fiber composites showed higher voids content (12.23%) than pure kenaf fiber composites (6.57%). CR fiber phenolic composite was more stable to the swelling tendency, resulting in the lowest percentage of swelling rate (4.11%) compared to kenaf composite (5.29%). The addition of kenaf fiber into CR composites had improved the tensile, flexural, and impact properties. The highest tensile and flexural properties were found for weight fraction of CR and kenaf fiber at 5C:5K (47.96 MPa) and 3C:7K (90.89 MPa) composites, respectively. In contrast, the highest impact properties were obtained for 0C:10K composites (9.56 kJ/m2). Based on the FE-SEM image, the CR fiber lumen was larger in comparison to kenaf fiber. The lumen of CR fiber was attributed to higher void and water absorption, lower mechanical properties compared to kenaf fiber. 5C:5K composite was selected as an optimal hybrid composite, based on the TOPSIS method. This hybrid composite can be used as an interior component (non-load-bearing structures) in the aviation and automotive sectors.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13193448</identifier><identifier>PMID: 34641263</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Automobile industry ; Aviation ; Ball milling ; Carbon ; Chemical vapor deposition ; Fiber reinforced plastics ; Fiber reinforced polymers ; Hybrid composites ; Kenaf ; Legislation ; Load bearing components ; Load bearing elements ; Mechanical properties ; Morphology ; Multi wall carbon nanotubes ; Phenolic resins ; Polymer matrix composites ; Polymers ; Sustainable materials ; Swelling ; Synthetic fibers ; Tensile strength ; Water absorption</subject><ispartof>Polymers, 2021-10, Vol.13 (19), p.3448</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-76df2e56a1d0be0e360a955276760c27f62b8190481e83e1117eb20c3cb4fb823</citedby><cites>FETCH-LOGICAL-c392t-76df2e56a1d0be0e360a955276760c27f62b8190481e83e1117eb20c3cb4fb823</cites><orcidid>0000-0002-5110-0242 ; 0000-0001-6908-0457 ; 0000-0001-5348-5740 ; 0000-0002-6957-4112 ; 0000-0003-4021-4460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2581016064/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2581016064?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Loganathan, Tamil Moli</creatorcontrib><creatorcontrib>Hameed Sultan, Mohamed Thariq</creatorcontrib><creatorcontrib>Jawaid, Mohammad</creatorcontrib><creatorcontrib>Ahsan, Qumrul</creatorcontrib><creatorcontrib>Naveen, Jesuarockiam</creatorcontrib><creatorcontrib>Shah, Ain Umaira Md</creatorcontrib><creatorcontrib>Abu Talib, Abd. Rahim</creatorcontrib><creatorcontrib>Basri, Adi Azriff</creatorcontrib><title>Physical, Mechanical, and Morphological Properties of Hybrid Cyrtostachys renda/Kenaf Fiber Reinforced with Multi-Walled Carbon Nanotubes (MWCNT)-Phenolic Composites</title><title>Polymers</title><description>Adequate awareness of sustainable materials and eco-legislation have inspired researchers to identify alternative sustainable and green composites for synthetic fiber-reinforced polymer composites in the automotive and aircraft industries. This research focused on investigating the physical, mechanical, and morphological properties of different hybrid Cyrtostachys renda (CR)/kenaf fiber (K) (10C:0K, 7C:3K, 5C:5K, 3C:7K, 0C:10K) reinforced with 0.5 wt% MWCNT–phenolic composites. We incorporated 0.5 wt% of MWCNT into phenolic resin (powder) using a ball milling process for 25 h to achieve homogeneous distribution. The results revealed that CR fiber composites showed higher voids content (12.23%) than pure kenaf fiber composites (6.57%). CR fiber phenolic composite was more stable to the swelling tendency, resulting in the lowest percentage of swelling rate (4.11%) compared to kenaf composite (5.29%). The addition of kenaf fiber into CR composites had improved the tensile, flexural, and impact properties. The highest tensile and flexural properties were found for weight fraction of CR and kenaf fiber at 5C:5K (47.96 MPa) and 3C:7K (90.89 MPa) composites, respectively. In contrast, the highest impact properties were obtained for 0C:10K composites (9.56 kJ/m2). Based on the FE-SEM image, the CR fiber lumen was larger in comparison to kenaf fiber. The lumen of CR fiber was attributed to higher void and water absorption, lower mechanical properties compared to kenaf fiber. 5C:5K composite was selected as an optimal hybrid composite, based on the TOPSIS method. This hybrid composite can be used as an interior component (non-load-bearing structures) in the aviation and automotive sectors.</description><subject>Automobile industry</subject><subject>Aviation</subject><subject>Ball milling</subject><subject>Carbon</subject><subject>Chemical vapor deposition</subject><subject>Fiber reinforced plastics</subject><subject>Fiber reinforced polymers</subject><subject>Hybrid composites</subject><subject>Kenaf</subject><subject>Legislation</subject><subject>Load bearing components</subject><subject>Load bearing elements</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Multi wall carbon nanotubes</subject><subject>Phenolic resins</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Sustainable materials</subject><subject>Swelling</subject><subject>Synthetic fibers</subject><subject>Tensile strength</subject><subject>Water absorption</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkl9r1UAQxYMottQ--r7gSwVj90-ySV4ECdaKvfUilT6G3c2k2bJ3J-5ulHwgv6e53iLWeZnDmcOPGZgse8noWyEaej6hW3ZMsEYURf0kO-a0EnkhJH36jz7KTmO8p2sVpZSsep4diUIWjEtxnP3ajku0Rrk3ZANmVP6gle_JBsM0osO7vUW2AScIyUIkOJDLRQfbk3YJCWNSZoWQAL5X55_Bq4FcWA2BfAXrBwwGevLTppFsZpdsfqucW51WBY2eXCuPadYr9mxz217fvM63I3h01pAWdxNGmyC-yJ4NykU4fegn2beLDzftZX715eOn9v1VbkTDU17JfuBQSsV6qoHCerxqypJXspLU8GqQXNesoUXNoBbAGKtAc2qE0cWgay5OsncH7jTrHfQGfArKdVOwOxWWDpXtHk-8Hbs7_NHVJeOMFyvg7AEQ8PsMMXU7Gw04pzzgHDte1qymXFC6Rl_9F73HOfj1vD8pyiSVe2B-SJmAMQYY_i7DaLf_ge7RD4jf3aClnA</recordid><startdate>20211008</startdate><enddate>20211008</enddate><creator>Loganathan, Tamil Moli</creator><creator>Hameed Sultan, Mohamed Thariq</creator><creator>Jawaid, Mohammad</creator><creator>Ahsan, Qumrul</creator><creator>Naveen, Jesuarockiam</creator><creator>Shah, Ain Umaira Md</creator><creator>Abu Talib, Abd. Rahim</creator><creator>Basri, Adi Azriff</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5110-0242</orcidid><orcidid>https://orcid.org/0000-0001-6908-0457</orcidid><orcidid>https://orcid.org/0000-0001-5348-5740</orcidid><orcidid>https://orcid.org/0000-0002-6957-4112</orcidid><orcidid>https://orcid.org/0000-0003-4021-4460</orcidid></search><sort><creationdate>20211008</creationdate><title>Physical, Mechanical, and Morphological Properties of Hybrid Cyrtostachys renda/Kenaf Fiber Reinforced with Multi-Walled Carbon Nanotubes (MWCNT)-Phenolic Composites</title><author>Loganathan, Tamil Moli ; Hameed Sultan, Mohamed Thariq ; Jawaid, Mohammad ; Ahsan, Qumrul ; Naveen, Jesuarockiam ; Shah, Ain Umaira Md ; Abu Talib, Abd. Rahim ; Basri, Adi Azriff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-76df2e56a1d0be0e360a955276760c27f62b8190481e83e1117eb20c3cb4fb823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automobile industry</topic><topic>Aviation</topic><topic>Ball milling</topic><topic>Carbon</topic><topic>Chemical vapor deposition</topic><topic>Fiber reinforced plastics</topic><topic>Fiber reinforced polymers</topic><topic>Hybrid composites</topic><topic>Kenaf</topic><topic>Legislation</topic><topic>Load bearing components</topic><topic>Load bearing elements</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Multi wall carbon nanotubes</topic><topic>Phenolic resins</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Sustainable materials</topic><topic>Swelling</topic><topic>Synthetic fibers</topic><topic>Tensile strength</topic><topic>Water absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loganathan, Tamil Moli</creatorcontrib><creatorcontrib>Hameed Sultan, Mohamed Thariq</creatorcontrib><creatorcontrib>Jawaid, Mohammad</creatorcontrib><creatorcontrib>Ahsan, Qumrul</creatorcontrib><creatorcontrib>Naveen, Jesuarockiam</creatorcontrib><creatorcontrib>Shah, Ain Umaira Md</creatorcontrib><creatorcontrib>Abu Talib, Abd. Rahim</creatorcontrib><creatorcontrib>Basri, Adi Azriff</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loganathan, Tamil Moli</au><au>Hameed Sultan, Mohamed Thariq</au><au>Jawaid, Mohammad</au><au>Ahsan, Qumrul</au><au>Naveen, Jesuarockiam</au><au>Shah, Ain Umaira Md</au><au>Abu Talib, Abd. Rahim</au><au>Basri, Adi Azriff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical, Mechanical, and Morphological Properties of Hybrid Cyrtostachys renda/Kenaf Fiber Reinforced with Multi-Walled Carbon Nanotubes (MWCNT)-Phenolic Composites</atitle><jtitle>Polymers</jtitle><date>2021-10-08</date><risdate>2021</risdate><volume>13</volume><issue>19</issue><spage>3448</spage><pages>3448-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Adequate awareness of sustainable materials and eco-legislation have inspired researchers to identify alternative sustainable and green composites for synthetic fiber-reinforced polymer composites in the automotive and aircraft industries. This research focused on investigating the physical, mechanical, and morphological properties of different hybrid Cyrtostachys renda (CR)/kenaf fiber (K) (10C:0K, 7C:3K, 5C:5K, 3C:7K, 0C:10K) reinforced with 0.5 wt% MWCNT–phenolic composites. We incorporated 0.5 wt% of MWCNT into phenolic resin (powder) using a ball milling process for 25 h to achieve homogeneous distribution. The results revealed that CR fiber composites showed higher voids content (12.23%) than pure kenaf fiber composites (6.57%). CR fiber phenolic composite was more stable to the swelling tendency, resulting in the lowest percentage of swelling rate (4.11%) compared to kenaf composite (5.29%). The addition of kenaf fiber into CR composites had improved the tensile, flexural, and impact properties. The highest tensile and flexural properties were found for weight fraction of CR and kenaf fiber at 5C:5K (47.96 MPa) and 3C:7K (90.89 MPa) composites, respectively. In contrast, the highest impact properties were obtained for 0C:10K composites (9.56 kJ/m2). Based on the FE-SEM image, the CR fiber lumen was larger in comparison to kenaf fiber. The lumen of CR fiber was attributed to higher void and water absorption, lower mechanical properties compared to kenaf fiber. 5C:5K composite was selected as an optimal hybrid composite, based on the TOPSIS method. This hybrid composite can be used as an interior component (non-load-bearing structures) in the aviation and automotive sectors.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34641263</pmid><doi>10.3390/polym13193448</doi><orcidid>https://orcid.org/0000-0002-5110-0242</orcidid><orcidid>https://orcid.org/0000-0001-6908-0457</orcidid><orcidid>https://orcid.org/0000-0001-5348-5740</orcidid><orcidid>https://orcid.org/0000-0002-6957-4112</orcidid><orcidid>https://orcid.org/0000-0003-4021-4460</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2021-10, Vol.13 (19), p.3448 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512124 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Automobile industry Aviation Ball milling Carbon Chemical vapor deposition Fiber reinforced plastics Fiber reinforced polymers Hybrid composites Kenaf Legislation Load bearing components Load bearing elements Mechanical properties Morphology Multi wall carbon nanotubes Phenolic resins Polymer matrix composites Polymers Sustainable materials Swelling Synthetic fibers Tensile strength Water absorption |
title | Physical, Mechanical, and Morphological Properties of Hybrid Cyrtostachys renda/Kenaf Fiber Reinforced with Multi-Walled Carbon Nanotubes (MWCNT)-Phenolic Composites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical,%20Mechanical,%20and%20Morphological%20Properties%20of%20Hybrid%20Cyrtostachys%20renda/Kenaf%20Fiber%20Reinforced%20with%20Multi-Walled%20Carbon%20Nanotubes%20(MWCNT)-Phenolic%20Composites&rft.jtitle=Polymers&rft.au=Loganathan,%20Tamil%20Moli&rft.date=2021-10-08&rft.volume=13&rft.issue=19&rft.spage=3448&rft.pages=3448-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13193448&rft_dat=%3Cproquest_pubme%3E2581802300%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-76df2e56a1d0be0e360a955276760c27f62b8190481e83e1117eb20c3cb4fb823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2581016064&rft_id=info:pmid/34641263&rfr_iscdi=true |