Loading…

Physical, Mechanical, and Morphological Properties of Hybrid Cyrtostachys renda/Kenaf Fiber Reinforced with Multi-Walled Carbon Nanotubes (MWCNT)-Phenolic Composites

Adequate awareness of sustainable materials and eco-legislation have inspired researchers to identify alternative sustainable and green composites for synthetic fiber-reinforced polymer composites in the automotive and aircraft industries. This research focused on investigating the physical, mechani...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2021-10, Vol.13 (19), p.3448
Main Authors: Loganathan, Tamil Moli, Hameed Sultan, Mohamed Thariq, Jawaid, Mohammad, Ahsan, Qumrul, Naveen, Jesuarockiam, Shah, Ain Umaira Md, Abu Talib, Abd. Rahim, Basri, Adi Azriff
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-76df2e56a1d0be0e360a955276760c27f62b8190481e83e1117eb20c3cb4fb823
cites cdi_FETCH-LOGICAL-c392t-76df2e56a1d0be0e360a955276760c27f62b8190481e83e1117eb20c3cb4fb823
container_end_page
container_issue 19
container_start_page 3448
container_title Polymers
container_volume 13
creator Loganathan, Tamil Moli
Hameed Sultan, Mohamed Thariq
Jawaid, Mohammad
Ahsan, Qumrul
Naveen, Jesuarockiam
Shah, Ain Umaira Md
Abu Talib, Abd. Rahim
Basri, Adi Azriff
description Adequate awareness of sustainable materials and eco-legislation have inspired researchers to identify alternative sustainable and green composites for synthetic fiber-reinforced polymer composites in the automotive and aircraft industries. This research focused on investigating the physical, mechanical, and morphological properties of different hybrid Cyrtostachys renda (CR)/kenaf fiber (K) (10C:0K, 7C:3K, 5C:5K, 3C:7K, 0C:10K) reinforced with 0.5 wt% MWCNT–phenolic composites. We incorporated 0.5 wt% of MWCNT into phenolic resin (powder) using a ball milling process for 25 h to achieve homogeneous distribution. The results revealed that CR fiber composites showed higher voids content (12.23%) than pure kenaf fiber composites (6.57%). CR fiber phenolic composite was more stable to the swelling tendency, resulting in the lowest percentage of swelling rate (4.11%) compared to kenaf composite (5.29%). The addition of kenaf fiber into CR composites had improved the tensile, flexural, and impact properties. The highest tensile and flexural properties were found for weight fraction of CR and kenaf fiber at 5C:5K (47.96 MPa) and 3C:7K (90.89 MPa) composites, respectively. In contrast, the highest impact properties were obtained for 0C:10K composites (9.56 kJ/m2). Based on the FE-SEM image, the CR fiber lumen was larger in comparison to kenaf fiber. The lumen of CR fiber was attributed to higher void and water absorption, lower mechanical properties compared to kenaf fiber. 5C:5K composite was selected as an optimal hybrid composite, based on the TOPSIS method. This hybrid composite can be used as an interior component (non-load-bearing structures) in the aviation and automotive sectors.
doi_str_mv 10.3390/polym13193448
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581802300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-76df2e56a1d0be0e360a955276760c27f62b8190481e83e1117eb20c3cb4fb823</originalsourceid><addsrcrecordid>eNpdkl9r1UAQxYMottQ--r7gSwVj90-ySV4ECdaKvfUilT6G3c2k2bJ3J-5ulHwgv6e53iLWeZnDmcOPGZgse8noWyEaej6hW3ZMsEYURf0kO-a0EnkhJH36jz7KTmO8p2sVpZSsep4diUIWjEtxnP3ajku0Rrk3ZANmVP6gle_JBsM0osO7vUW2AScIyUIkOJDLRQfbk3YJCWNSZoWQAL5X55_Bq4FcWA2BfAXrBwwGevLTppFsZpdsfqucW51WBY2eXCuPadYr9mxz217fvM63I3h01pAWdxNGmyC-yJ4NykU4fegn2beLDzftZX715eOn9v1VbkTDU17JfuBQSsV6qoHCerxqypJXspLU8GqQXNesoUXNoBbAGKtAc2qE0cWgay5OsncH7jTrHfQGfArKdVOwOxWWDpXtHk-8Hbs7_NHVJeOMFyvg7AEQ8PsMMXU7Gw04pzzgHDte1qymXFC6Rl_9F73HOfj1vD8pyiSVe2B-SJmAMQYY_i7DaLf_ge7RD4jf3aClnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581016064</pqid></control><display><type>article</type><title>Physical, Mechanical, and Morphological Properties of Hybrid Cyrtostachys renda/Kenaf Fiber Reinforced with Multi-Walled Carbon Nanotubes (MWCNT)-Phenolic Composites</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Loganathan, Tamil Moli ; Hameed Sultan, Mohamed Thariq ; Jawaid, Mohammad ; Ahsan, Qumrul ; Naveen, Jesuarockiam ; Shah, Ain Umaira Md ; Abu Talib, Abd. Rahim ; Basri, Adi Azriff</creator><creatorcontrib>Loganathan, Tamil Moli ; Hameed Sultan, Mohamed Thariq ; Jawaid, Mohammad ; Ahsan, Qumrul ; Naveen, Jesuarockiam ; Shah, Ain Umaira Md ; Abu Talib, Abd. Rahim ; Basri, Adi Azriff</creatorcontrib><description>Adequate awareness of sustainable materials and eco-legislation have inspired researchers to identify alternative sustainable and green composites for synthetic fiber-reinforced polymer composites in the automotive and aircraft industries. This research focused on investigating the physical, mechanical, and morphological properties of different hybrid Cyrtostachys renda (CR)/kenaf fiber (K) (10C:0K, 7C:3K, 5C:5K, 3C:7K, 0C:10K) reinforced with 0.5 wt% MWCNT–phenolic composites. We incorporated 0.5 wt% of MWCNT into phenolic resin (powder) using a ball milling process for 25 h to achieve homogeneous distribution. The results revealed that CR fiber composites showed higher voids content (12.23%) than pure kenaf fiber composites (6.57%). CR fiber phenolic composite was more stable to the swelling tendency, resulting in the lowest percentage of swelling rate (4.11%) compared to kenaf composite (5.29%). The addition of kenaf fiber into CR composites had improved the tensile, flexural, and impact properties. The highest tensile and flexural properties were found for weight fraction of CR and kenaf fiber at 5C:5K (47.96 MPa) and 3C:7K (90.89 MPa) composites, respectively. In contrast, the highest impact properties were obtained for 0C:10K composites (9.56 kJ/m2). Based on the FE-SEM image, the CR fiber lumen was larger in comparison to kenaf fiber. The lumen of CR fiber was attributed to higher void and water absorption, lower mechanical properties compared to kenaf fiber. 5C:5K composite was selected as an optimal hybrid composite, based on the TOPSIS method. This hybrid composite can be used as an interior component (non-load-bearing structures) in the aviation and automotive sectors.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13193448</identifier><identifier>PMID: 34641263</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Automobile industry ; Aviation ; Ball milling ; Carbon ; Chemical vapor deposition ; Fiber reinforced plastics ; Fiber reinforced polymers ; Hybrid composites ; Kenaf ; Legislation ; Load bearing components ; Load bearing elements ; Mechanical properties ; Morphology ; Multi wall carbon nanotubes ; Phenolic resins ; Polymer matrix composites ; Polymers ; Sustainable materials ; Swelling ; Synthetic fibers ; Tensile strength ; Water absorption</subject><ispartof>Polymers, 2021-10, Vol.13 (19), p.3448</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-76df2e56a1d0be0e360a955276760c27f62b8190481e83e1117eb20c3cb4fb823</citedby><cites>FETCH-LOGICAL-c392t-76df2e56a1d0be0e360a955276760c27f62b8190481e83e1117eb20c3cb4fb823</cites><orcidid>0000-0002-5110-0242 ; 0000-0001-6908-0457 ; 0000-0001-5348-5740 ; 0000-0002-6957-4112 ; 0000-0003-4021-4460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2581016064/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2581016064?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Loganathan, Tamil Moli</creatorcontrib><creatorcontrib>Hameed Sultan, Mohamed Thariq</creatorcontrib><creatorcontrib>Jawaid, Mohammad</creatorcontrib><creatorcontrib>Ahsan, Qumrul</creatorcontrib><creatorcontrib>Naveen, Jesuarockiam</creatorcontrib><creatorcontrib>Shah, Ain Umaira Md</creatorcontrib><creatorcontrib>Abu Talib, Abd. Rahim</creatorcontrib><creatorcontrib>Basri, Adi Azriff</creatorcontrib><title>Physical, Mechanical, and Morphological Properties of Hybrid Cyrtostachys renda/Kenaf Fiber Reinforced with Multi-Walled Carbon Nanotubes (MWCNT)-Phenolic Composites</title><title>Polymers</title><description>Adequate awareness of sustainable materials and eco-legislation have inspired researchers to identify alternative sustainable and green composites for synthetic fiber-reinforced polymer composites in the automotive and aircraft industries. This research focused on investigating the physical, mechanical, and morphological properties of different hybrid Cyrtostachys renda (CR)/kenaf fiber (K) (10C:0K, 7C:3K, 5C:5K, 3C:7K, 0C:10K) reinforced with 0.5 wt% MWCNT–phenolic composites. We incorporated 0.5 wt% of MWCNT into phenolic resin (powder) using a ball milling process for 25 h to achieve homogeneous distribution. The results revealed that CR fiber composites showed higher voids content (12.23%) than pure kenaf fiber composites (6.57%). CR fiber phenolic composite was more stable to the swelling tendency, resulting in the lowest percentage of swelling rate (4.11%) compared to kenaf composite (5.29%). The addition of kenaf fiber into CR composites had improved the tensile, flexural, and impact properties. The highest tensile and flexural properties were found for weight fraction of CR and kenaf fiber at 5C:5K (47.96 MPa) and 3C:7K (90.89 MPa) composites, respectively. In contrast, the highest impact properties were obtained for 0C:10K composites (9.56 kJ/m2). Based on the FE-SEM image, the CR fiber lumen was larger in comparison to kenaf fiber. The lumen of CR fiber was attributed to higher void and water absorption, lower mechanical properties compared to kenaf fiber. 5C:5K composite was selected as an optimal hybrid composite, based on the TOPSIS method. This hybrid composite can be used as an interior component (non-load-bearing structures) in the aviation and automotive sectors.</description><subject>Automobile industry</subject><subject>Aviation</subject><subject>Ball milling</subject><subject>Carbon</subject><subject>Chemical vapor deposition</subject><subject>Fiber reinforced plastics</subject><subject>Fiber reinforced polymers</subject><subject>Hybrid composites</subject><subject>Kenaf</subject><subject>Legislation</subject><subject>Load bearing components</subject><subject>Load bearing elements</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Multi wall carbon nanotubes</subject><subject>Phenolic resins</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Sustainable materials</subject><subject>Swelling</subject><subject>Synthetic fibers</subject><subject>Tensile strength</subject><subject>Water absorption</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkl9r1UAQxYMottQ--r7gSwVj90-ySV4ECdaKvfUilT6G3c2k2bJ3J-5ulHwgv6e53iLWeZnDmcOPGZgse8noWyEaej6hW3ZMsEYURf0kO-a0EnkhJH36jz7KTmO8p2sVpZSsep4diUIWjEtxnP3ajku0Rrk3ZANmVP6gle_JBsM0osO7vUW2AScIyUIkOJDLRQfbk3YJCWNSZoWQAL5X55_Bq4FcWA2BfAXrBwwGevLTppFsZpdsfqucW51WBY2eXCuPadYr9mxz217fvM63I3h01pAWdxNGmyC-yJ4NykU4fegn2beLDzftZX715eOn9v1VbkTDU17JfuBQSsV6qoHCerxqypJXspLU8GqQXNesoUXNoBbAGKtAc2qE0cWgay5OsncH7jTrHfQGfArKdVOwOxWWDpXtHk-8Hbs7_NHVJeOMFyvg7AEQ8PsMMXU7Gw04pzzgHDte1qymXFC6Rl_9F73HOfj1vD8pyiSVe2B-SJmAMQYY_i7DaLf_ge7RD4jf3aClnA</recordid><startdate>20211008</startdate><enddate>20211008</enddate><creator>Loganathan, Tamil Moli</creator><creator>Hameed Sultan, Mohamed Thariq</creator><creator>Jawaid, Mohammad</creator><creator>Ahsan, Qumrul</creator><creator>Naveen, Jesuarockiam</creator><creator>Shah, Ain Umaira Md</creator><creator>Abu Talib, Abd. Rahim</creator><creator>Basri, Adi Azriff</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5110-0242</orcidid><orcidid>https://orcid.org/0000-0001-6908-0457</orcidid><orcidid>https://orcid.org/0000-0001-5348-5740</orcidid><orcidid>https://orcid.org/0000-0002-6957-4112</orcidid><orcidid>https://orcid.org/0000-0003-4021-4460</orcidid></search><sort><creationdate>20211008</creationdate><title>Physical, Mechanical, and Morphological Properties of Hybrid Cyrtostachys renda/Kenaf Fiber Reinforced with Multi-Walled Carbon Nanotubes (MWCNT)-Phenolic Composites</title><author>Loganathan, Tamil Moli ; Hameed Sultan, Mohamed Thariq ; Jawaid, Mohammad ; Ahsan, Qumrul ; Naveen, Jesuarockiam ; Shah, Ain Umaira Md ; Abu Talib, Abd. Rahim ; Basri, Adi Azriff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-76df2e56a1d0be0e360a955276760c27f62b8190481e83e1117eb20c3cb4fb823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automobile industry</topic><topic>Aviation</topic><topic>Ball milling</topic><topic>Carbon</topic><topic>Chemical vapor deposition</topic><topic>Fiber reinforced plastics</topic><topic>Fiber reinforced polymers</topic><topic>Hybrid composites</topic><topic>Kenaf</topic><topic>Legislation</topic><topic>Load bearing components</topic><topic>Load bearing elements</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Multi wall carbon nanotubes</topic><topic>Phenolic resins</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Sustainable materials</topic><topic>Swelling</topic><topic>Synthetic fibers</topic><topic>Tensile strength</topic><topic>Water absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loganathan, Tamil Moli</creatorcontrib><creatorcontrib>Hameed Sultan, Mohamed Thariq</creatorcontrib><creatorcontrib>Jawaid, Mohammad</creatorcontrib><creatorcontrib>Ahsan, Qumrul</creatorcontrib><creatorcontrib>Naveen, Jesuarockiam</creatorcontrib><creatorcontrib>Shah, Ain Umaira Md</creatorcontrib><creatorcontrib>Abu Talib, Abd. Rahim</creatorcontrib><creatorcontrib>Basri, Adi Azriff</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loganathan, Tamil Moli</au><au>Hameed Sultan, Mohamed Thariq</au><au>Jawaid, Mohammad</au><au>Ahsan, Qumrul</au><au>Naveen, Jesuarockiam</au><au>Shah, Ain Umaira Md</au><au>Abu Talib, Abd. Rahim</au><au>Basri, Adi Azriff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical, Mechanical, and Morphological Properties of Hybrid Cyrtostachys renda/Kenaf Fiber Reinforced with Multi-Walled Carbon Nanotubes (MWCNT)-Phenolic Composites</atitle><jtitle>Polymers</jtitle><date>2021-10-08</date><risdate>2021</risdate><volume>13</volume><issue>19</issue><spage>3448</spage><pages>3448-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Adequate awareness of sustainable materials and eco-legislation have inspired researchers to identify alternative sustainable and green composites for synthetic fiber-reinforced polymer composites in the automotive and aircraft industries. This research focused on investigating the physical, mechanical, and morphological properties of different hybrid Cyrtostachys renda (CR)/kenaf fiber (K) (10C:0K, 7C:3K, 5C:5K, 3C:7K, 0C:10K) reinforced with 0.5 wt% MWCNT–phenolic composites. We incorporated 0.5 wt% of MWCNT into phenolic resin (powder) using a ball milling process for 25 h to achieve homogeneous distribution. The results revealed that CR fiber composites showed higher voids content (12.23%) than pure kenaf fiber composites (6.57%). CR fiber phenolic composite was more stable to the swelling tendency, resulting in the lowest percentage of swelling rate (4.11%) compared to kenaf composite (5.29%). The addition of kenaf fiber into CR composites had improved the tensile, flexural, and impact properties. The highest tensile and flexural properties were found for weight fraction of CR and kenaf fiber at 5C:5K (47.96 MPa) and 3C:7K (90.89 MPa) composites, respectively. In contrast, the highest impact properties were obtained for 0C:10K composites (9.56 kJ/m2). Based on the FE-SEM image, the CR fiber lumen was larger in comparison to kenaf fiber. The lumen of CR fiber was attributed to higher void and water absorption, lower mechanical properties compared to kenaf fiber. 5C:5K composite was selected as an optimal hybrid composite, based on the TOPSIS method. This hybrid composite can be used as an interior component (non-load-bearing structures) in the aviation and automotive sectors.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34641263</pmid><doi>10.3390/polym13193448</doi><orcidid>https://orcid.org/0000-0002-5110-0242</orcidid><orcidid>https://orcid.org/0000-0001-6908-0457</orcidid><orcidid>https://orcid.org/0000-0001-5348-5740</orcidid><orcidid>https://orcid.org/0000-0002-6957-4112</orcidid><orcidid>https://orcid.org/0000-0003-4021-4460</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2021-10, Vol.13 (19), p.3448
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512124
source Open Access: PubMed Central; Publicly Available Content Database
subjects Automobile industry
Aviation
Ball milling
Carbon
Chemical vapor deposition
Fiber reinforced plastics
Fiber reinforced polymers
Hybrid composites
Kenaf
Legislation
Load bearing components
Load bearing elements
Mechanical properties
Morphology
Multi wall carbon nanotubes
Phenolic resins
Polymer matrix composites
Polymers
Sustainable materials
Swelling
Synthetic fibers
Tensile strength
Water absorption
title Physical, Mechanical, and Morphological Properties of Hybrid Cyrtostachys renda/Kenaf Fiber Reinforced with Multi-Walled Carbon Nanotubes (MWCNT)-Phenolic Composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical,%20Mechanical,%20and%20Morphological%20Properties%20of%20Hybrid%20Cyrtostachys%20renda/Kenaf%20Fiber%20Reinforced%20with%20Multi-Walled%20Carbon%20Nanotubes%20(MWCNT)-Phenolic%20Composites&rft.jtitle=Polymers&rft.au=Loganathan,%20Tamil%20Moli&rft.date=2021-10-08&rft.volume=13&rft.issue=19&rft.spage=3448&rft.pages=3448-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13193448&rft_dat=%3Cproquest_pubme%3E2581802300%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-76df2e56a1d0be0e360a955276760c27f62b8190481e83e1117eb20c3cb4fb823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2581016064&rft_id=info:pmid/34641263&rfr_iscdi=true