Loading…
A Hydrophobic Derivative of Ciprofloxacin as a New Photoinitiator of Two-Photon Polymerization: Synthesis and Usage for the Formation of Biocompatible Polylactide-Based 3D Scaffolds
A hydrophobic derivative of ciprofloxacin, hexanoylated ciprofloxacin (CPF-hex), has been used as a photoinitiator (PI) for two-photon polymerization (2PP) for the first time. We present, here, the synthesis of CPF-hex and its application for 2PP of methacrylate-terminated star-shaped poly (D,L-lact...
Saved in:
Published in: | Polymers 2021-10, Vol.13 (19), p.3385 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-9e1ef0354b80d303a3ffad39229a26ce87f60f09a9782b16db06a0e4fe278ded3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-9e1ef0354b80d303a3ffad39229a26ce87f60f09a9782b16db06a0e4fe278ded3 |
container_end_page | |
container_issue | 19 |
container_start_page | 3385 |
container_title | Polymers |
container_volume | 13 |
creator | Bardakova, Kseniia N. Faletrov, Yaroslav V. Epifanov, Evgenii O. Minaev, Nikita V. Kaplin, Vladislav S. Piskun, Yuliya A. Koteneva, Polina I. Shkumatov, Vladimir M. Aksenova, Nadezhda A. Shpichka, Anastasia I. Solovieva, Anna B. Kostjuk, Sergei V. Timashev, Peter S. |
description | A hydrophobic derivative of ciprofloxacin, hexanoylated ciprofloxacin (CPF-hex), has been used as a photoinitiator (PI) for two-photon polymerization (2PP) for the first time. We present, here, the synthesis of CPF-hex and its application for 2PP of methacrylate-terminated star-shaped poly (D,L-lactide), as well a systematic study on the optical, physicochemical and mechanical properties of the photocurable resin and prepared three-dimensional scaffolds. CPF-hex exhibited good solubility in the photocurable resin, high absorption at the two-photon wavelength and a low fluorescence quantum yield = 0.079. Structuring tests showed a relatively broad processing window and revealed the efficiency of CPF-hex as a 2PP PI. The prepared three-dimensional scaffolds showed good thermal stability; thermal decomposition was observed only at 314 °C. In addition, they demonstrated an increase in Young’s modulus after the UV post-curing (from 336 ± 79 MPa to 564 ± 183 MPa, which is close to those of a cancellous (trabecular) bone). Moreover, using CPF-hex as a 2PP PI did not compromise the scaffolds’ low cytotoxicity, thus they are suitable for potential application in bone tissue regeneration. |
doi_str_mv | 10.3390/polym13193385 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581021047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-9e1ef0354b80d303a3ffad39229a26ce87f60f09a9782b16db06a0e4fe278ded3</originalsourceid><addsrcrecordid>eNpdkktP3DAQgKOqVUGUY--Weukl4EeePVSCpZRKqEUCztHEHrNGiSe1s0uX_9X_V--CqlJf7Jn55tNYmix7L_iRUi0_nmjYjEKJVqmmfJXtS16rvFAVf_3Pey87jPGep1OUVSXqt9meKqpCSM73s98n7GJjAk1L6p1mZxjcGma3RkaWLdwUyA70C7TzDCID9h0f2NWSZnLezQ5mClvw5oHyXdazq-1IyfKYLOQ_seuNn5cYXWr2ht1GuENmU1dKsnMK4w7bOk4daRqnFPcD7jQD6NkZzE8homHqjF1rsJYGE99lbywMEQ-f74Ps9vzLzeIiv_zx9dvi5DLXqpVz3qJAy1VZ9A03iitQ1oJJJdmCrDQ2ta245S20dSN7UZmeV8CxsCjrxqBRB9nnJ--06kc0Gv0cYOim4EYIm47AdS8r3i27O1p3TSmkKusk-PgsCPRzhXHuRhc1DgN4pFXsZNmIRsq6bhP64T_0nlbBp-_tKC4FL7bC_InSgWIMaP8OI3i33YnuxU6oP1RerSM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581021047</pqid></control><display><type>article</type><title>A Hydrophobic Derivative of Ciprofloxacin as a New Photoinitiator of Two-Photon Polymerization: Synthesis and Usage for the Formation of Biocompatible Polylactide-Based 3D Scaffolds</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Bardakova, Kseniia N. ; Faletrov, Yaroslav V. ; Epifanov, Evgenii O. ; Minaev, Nikita V. ; Kaplin, Vladislav S. ; Piskun, Yuliya A. ; Koteneva, Polina I. ; Shkumatov, Vladimir M. ; Aksenova, Nadezhda A. ; Shpichka, Anastasia I. ; Solovieva, Anna B. ; Kostjuk, Sergei V. ; Timashev, Peter S.</creator><creatorcontrib>Bardakova, Kseniia N. ; Faletrov, Yaroslav V. ; Epifanov, Evgenii O. ; Minaev, Nikita V. ; Kaplin, Vladislav S. ; Piskun, Yuliya A. ; Koteneva, Polina I. ; Shkumatov, Vladimir M. ; Aksenova, Nadezhda A. ; Shpichka, Anastasia I. ; Solovieva, Anna B. ; Kostjuk, Sergei V. ; Timashev, Peter S.</creatorcontrib><description>A hydrophobic derivative of ciprofloxacin, hexanoylated ciprofloxacin (CPF-hex), has been used as a photoinitiator (PI) for two-photon polymerization (2PP) for the first time. We present, here, the synthesis of CPF-hex and its application for 2PP of methacrylate-terminated star-shaped poly (D,L-lactide), as well a systematic study on the optical, physicochemical and mechanical properties of the photocurable resin and prepared three-dimensional scaffolds. CPF-hex exhibited good solubility in the photocurable resin, high absorption at the two-photon wavelength and a low fluorescence quantum yield = 0.079. Structuring tests showed a relatively broad processing window and revealed the efficiency of CPF-hex as a 2PP PI. The prepared three-dimensional scaffolds showed good thermal stability; thermal decomposition was observed only at 314 °C. In addition, they demonstrated an increase in Young’s modulus after the UV post-curing (from 336 ± 79 MPa to 564 ± 183 MPa, which is close to those of a cancellous (trabecular) bone). Moreover, using CPF-hex as a 2PP PI did not compromise the scaffolds’ low cytotoxicity, thus they are suitable for potential application in bone tissue regeneration.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13193385</identifier><identifier>PMID: 34641200</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biocompatibility ; Chemical synthesis ; Efficiency ; Fluorescence ; Hydrophobicity ; Lasers ; Mechanical properties ; Modulus of elasticity ; Optical properties ; Photocuring ; Photoinitiators ; Photons ; Polyimide resins ; Polylactic acid ; Polymerization ; Regeneration ; Resins ; Scaffolds ; Thermal decomposition ; Thermal stability ; Tissue engineering ; Toxicity</subject><ispartof>Polymers, 2021-10, Vol.13 (19), p.3385</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-9e1ef0354b80d303a3ffad39229a26ce87f60f09a9782b16db06a0e4fe278ded3</citedby><cites>FETCH-LOGICAL-c392t-9e1ef0354b80d303a3ffad39229a26ce87f60f09a9782b16db06a0e4fe278ded3</cites><orcidid>0000-0003-0527-8899 ; 0000-0001-7773-2435 ; 0000-0002-3942-5706 ; 0000-0002-9931-0118 ; 0000-0001-9428-8487 ; 0000-0002-7466-3662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2581021047/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2581021047?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Bardakova, Kseniia N.</creatorcontrib><creatorcontrib>Faletrov, Yaroslav V.</creatorcontrib><creatorcontrib>Epifanov, Evgenii O.</creatorcontrib><creatorcontrib>Minaev, Nikita V.</creatorcontrib><creatorcontrib>Kaplin, Vladislav S.</creatorcontrib><creatorcontrib>Piskun, Yuliya A.</creatorcontrib><creatorcontrib>Koteneva, Polina I.</creatorcontrib><creatorcontrib>Shkumatov, Vladimir M.</creatorcontrib><creatorcontrib>Aksenova, Nadezhda A.</creatorcontrib><creatorcontrib>Shpichka, Anastasia I.</creatorcontrib><creatorcontrib>Solovieva, Anna B.</creatorcontrib><creatorcontrib>Kostjuk, Sergei V.</creatorcontrib><creatorcontrib>Timashev, Peter S.</creatorcontrib><title>A Hydrophobic Derivative of Ciprofloxacin as a New Photoinitiator of Two-Photon Polymerization: Synthesis and Usage for the Formation of Biocompatible Polylactide-Based 3D Scaffolds</title><title>Polymers</title><description>A hydrophobic derivative of ciprofloxacin, hexanoylated ciprofloxacin (CPF-hex), has been used as a photoinitiator (PI) for two-photon polymerization (2PP) for the first time. We present, here, the synthesis of CPF-hex and its application for 2PP of methacrylate-terminated star-shaped poly (D,L-lactide), as well a systematic study on the optical, physicochemical and mechanical properties of the photocurable resin and prepared three-dimensional scaffolds. CPF-hex exhibited good solubility in the photocurable resin, high absorption at the two-photon wavelength and a low fluorescence quantum yield = 0.079. Structuring tests showed a relatively broad processing window and revealed the efficiency of CPF-hex as a 2PP PI. The prepared three-dimensional scaffolds showed good thermal stability; thermal decomposition was observed only at 314 °C. In addition, they demonstrated an increase in Young’s modulus after the UV post-curing (from 336 ± 79 MPa to 564 ± 183 MPa, which is close to those of a cancellous (trabecular) bone). Moreover, using CPF-hex as a 2PP PI did not compromise the scaffolds’ low cytotoxicity, thus they are suitable for potential application in bone tissue regeneration.</description><subject>Biocompatibility</subject><subject>Chemical synthesis</subject><subject>Efficiency</subject><subject>Fluorescence</subject><subject>Hydrophobicity</subject><subject>Lasers</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Optical properties</subject><subject>Photocuring</subject><subject>Photoinitiators</subject><subject>Photons</subject><subject>Polyimide resins</subject><subject>Polylactic acid</subject><subject>Polymerization</subject><subject>Regeneration</subject><subject>Resins</subject><subject>Scaffolds</subject><subject>Thermal decomposition</subject><subject>Thermal stability</subject><subject>Tissue engineering</subject><subject>Toxicity</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkktP3DAQgKOqVUGUY--Weukl4EeePVSCpZRKqEUCztHEHrNGiSe1s0uX_9X_V--CqlJf7Jn55tNYmix7L_iRUi0_nmjYjEKJVqmmfJXtS16rvFAVf_3Pey87jPGep1OUVSXqt9meKqpCSM73s98n7GJjAk1L6p1mZxjcGma3RkaWLdwUyA70C7TzDCID9h0f2NWSZnLezQ5mClvw5oHyXdazq-1IyfKYLOQ_seuNn5cYXWr2ht1GuENmU1dKsnMK4w7bOk4daRqnFPcD7jQD6NkZzE8homHqjF1rsJYGE99lbywMEQ-f74Ps9vzLzeIiv_zx9dvi5DLXqpVz3qJAy1VZ9A03iitQ1oJJJdmCrDQ2ta245S20dSN7UZmeV8CxsCjrxqBRB9nnJ--06kc0Gv0cYOim4EYIm47AdS8r3i27O1p3TSmkKusk-PgsCPRzhXHuRhc1DgN4pFXsZNmIRsq6bhP64T_0nlbBp-_tKC4FL7bC_InSgWIMaP8OI3i33YnuxU6oP1RerSM</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Bardakova, Kseniia N.</creator><creator>Faletrov, Yaroslav V.</creator><creator>Epifanov, Evgenii O.</creator><creator>Minaev, Nikita V.</creator><creator>Kaplin, Vladislav S.</creator><creator>Piskun, Yuliya A.</creator><creator>Koteneva, Polina I.</creator><creator>Shkumatov, Vladimir M.</creator><creator>Aksenova, Nadezhda A.</creator><creator>Shpichka, Anastasia I.</creator><creator>Solovieva, Anna B.</creator><creator>Kostjuk, Sergei V.</creator><creator>Timashev, Peter S.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0527-8899</orcidid><orcidid>https://orcid.org/0000-0001-7773-2435</orcidid><orcidid>https://orcid.org/0000-0002-3942-5706</orcidid><orcidid>https://orcid.org/0000-0002-9931-0118</orcidid><orcidid>https://orcid.org/0000-0001-9428-8487</orcidid><orcidid>https://orcid.org/0000-0002-7466-3662</orcidid></search><sort><creationdate>20211001</creationdate><title>A Hydrophobic Derivative of Ciprofloxacin as a New Photoinitiator of Two-Photon Polymerization: Synthesis and Usage for the Formation of Biocompatible Polylactide-Based 3D Scaffolds</title><author>Bardakova, Kseniia N. ; Faletrov, Yaroslav V. ; Epifanov, Evgenii O. ; Minaev, Nikita V. ; Kaplin, Vladislav S. ; Piskun, Yuliya A. ; Koteneva, Polina I. ; Shkumatov, Vladimir M. ; Aksenova, Nadezhda A. ; Shpichka, Anastasia I. ; Solovieva, Anna B. ; Kostjuk, Sergei V. ; Timashev, Peter S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-9e1ef0354b80d303a3ffad39229a26ce87f60f09a9782b16db06a0e4fe278ded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biocompatibility</topic><topic>Chemical synthesis</topic><topic>Efficiency</topic><topic>Fluorescence</topic><topic>Hydrophobicity</topic><topic>Lasers</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Optical properties</topic><topic>Photocuring</topic><topic>Photoinitiators</topic><topic>Photons</topic><topic>Polyimide resins</topic><topic>Polylactic acid</topic><topic>Polymerization</topic><topic>Regeneration</topic><topic>Resins</topic><topic>Scaffolds</topic><topic>Thermal decomposition</topic><topic>Thermal stability</topic><topic>Tissue engineering</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardakova, Kseniia N.</creatorcontrib><creatorcontrib>Faletrov, Yaroslav V.</creatorcontrib><creatorcontrib>Epifanov, Evgenii O.</creatorcontrib><creatorcontrib>Minaev, Nikita V.</creatorcontrib><creatorcontrib>Kaplin, Vladislav S.</creatorcontrib><creatorcontrib>Piskun, Yuliya A.</creatorcontrib><creatorcontrib>Koteneva, Polina I.</creatorcontrib><creatorcontrib>Shkumatov, Vladimir M.</creatorcontrib><creatorcontrib>Aksenova, Nadezhda A.</creatorcontrib><creatorcontrib>Shpichka, Anastasia I.</creatorcontrib><creatorcontrib>Solovieva, Anna B.</creatorcontrib><creatorcontrib>Kostjuk, Sergei V.</creatorcontrib><creatorcontrib>Timashev, Peter S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardakova, Kseniia N.</au><au>Faletrov, Yaroslav V.</au><au>Epifanov, Evgenii O.</au><au>Minaev, Nikita V.</au><au>Kaplin, Vladislav S.</au><au>Piskun, Yuliya A.</au><au>Koteneva, Polina I.</au><au>Shkumatov, Vladimir M.</au><au>Aksenova, Nadezhda A.</au><au>Shpichka, Anastasia I.</au><au>Solovieva, Anna B.</au><au>Kostjuk, Sergei V.</au><au>Timashev, Peter S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hydrophobic Derivative of Ciprofloxacin as a New Photoinitiator of Two-Photon Polymerization: Synthesis and Usage for the Formation of Biocompatible Polylactide-Based 3D Scaffolds</atitle><jtitle>Polymers</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>13</volume><issue>19</issue><spage>3385</spage><pages>3385-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>A hydrophobic derivative of ciprofloxacin, hexanoylated ciprofloxacin (CPF-hex), has been used as a photoinitiator (PI) for two-photon polymerization (2PP) for the first time. We present, here, the synthesis of CPF-hex and its application for 2PP of methacrylate-terminated star-shaped poly (D,L-lactide), as well a systematic study on the optical, physicochemical and mechanical properties of the photocurable resin and prepared three-dimensional scaffolds. CPF-hex exhibited good solubility in the photocurable resin, high absorption at the two-photon wavelength and a low fluorescence quantum yield = 0.079. Structuring tests showed a relatively broad processing window and revealed the efficiency of CPF-hex as a 2PP PI. The prepared three-dimensional scaffolds showed good thermal stability; thermal decomposition was observed only at 314 °C. In addition, they demonstrated an increase in Young’s modulus after the UV post-curing (from 336 ± 79 MPa to 564 ± 183 MPa, which is close to those of a cancellous (trabecular) bone). Moreover, using CPF-hex as a 2PP PI did not compromise the scaffolds’ low cytotoxicity, thus they are suitable for potential application in bone tissue regeneration.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34641200</pmid><doi>10.3390/polym13193385</doi><orcidid>https://orcid.org/0000-0003-0527-8899</orcidid><orcidid>https://orcid.org/0000-0001-7773-2435</orcidid><orcidid>https://orcid.org/0000-0002-3942-5706</orcidid><orcidid>https://orcid.org/0000-0002-9931-0118</orcidid><orcidid>https://orcid.org/0000-0001-9428-8487</orcidid><orcidid>https://orcid.org/0000-0002-7466-3662</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2021-10, Vol.13 (19), p.3385 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512357 |
source | Publicly Available Content Database; PubMed Central |
subjects | Biocompatibility Chemical synthesis Efficiency Fluorescence Hydrophobicity Lasers Mechanical properties Modulus of elasticity Optical properties Photocuring Photoinitiators Photons Polyimide resins Polylactic acid Polymerization Regeneration Resins Scaffolds Thermal decomposition Thermal stability Tissue engineering Toxicity |
title | A Hydrophobic Derivative of Ciprofloxacin as a New Photoinitiator of Two-Photon Polymerization: Synthesis and Usage for the Formation of Biocompatible Polylactide-Based 3D Scaffolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hydrophobic%20Derivative%20of%20Ciprofloxacin%20as%20a%20New%20Photoinitiator%20of%20Two-Photon%20Polymerization:%20Synthesis%20and%20Usage%20for%20the%20Formation%20of%20Biocompatible%20Polylactide-Based%203D%20Scaffolds&rft.jtitle=Polymers&rft.au=Bardakova,%20Kseniia%20N.&rft.date=2021-10-01&rft.volume=13&rft.issue=19&rft.spage=3385&rft.pages=3385-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13193385&rft_dat=%3Cproquest_pubme%3E2581021047%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-9e1ef0354b80d303a3ffad39229a26ce87f60f09a9782b16db06a0e4fe278ded3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2581021047&rft_id=info:pmid/34641200&rfr_iscdi=true |