Loading…

Vibrio fischeri imports and assimilates sulfate during symbiosis with Euprymna scolopes

Sulfur is in cellular components of bacteria and is, therefore, an element necessary for growth. However, mechanisms by which bacteria satisfy their sulfur needs within a host are poorly understood. Vibrio fischeri is a bacterial symbiont that colonizes, grows, and produces bioluminescence within th...

Full description

Saved in:
Bibliographic Details
Published in:Molecular microbiology 2021-09, Vol.116 (3), p.926-942
Main Authors: Wasilko, Nathan P., Ceron, Josue S., Baker, Emily R., Cecere, Andrew G., Wollenberg, Michael S., Miyashiro, Tim I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4430-b863fa361883f0c2120a61ceed969bf09a35779ff53c8dadd7389d5759a4039f3
cites cdi_FETCH-LOGICAL-c4430-b863fa361883f0c2120a61ceed969bf09a35779ff53c8dadd7389d5759a4039f3
container_end_page 942
container_issue 3
container_start_page 926
container_title Molecular microbiology
container_volume 116
creator Wasilko, Nathan P.
Ceron, Josue S.
Baker, Emily R.
Cecere, Andrew G.
Wollenberg, Michael S.
Miyashiro, Tim I.
description Sulfur is in cellular components of bacteria and is, therefore, an element necessary for growth. However, mechanisms by which bacteria satisfy their sulfur needs within a host are poorly understood. Vibrio fischeri is a bacterial symbiont that colonizes, grows, and produces bioluminescence within the light organ of the Hawaiian bobtail squid, which provides an experimental platform for investigating sulfur acquisition in vivo. Like other γ‐proteobacteria, V. fischeri fuels sulfur‐dependent anabolic processes with intracellular cysteine. Within the light organ, the abundance of a ΔcysK mutant, which cannot synthesize cysteine through sulfate assimilation, is attenuated, suggesting sulfate import is necessary for V. fischeri to establish symbiosis. Genes encoding sulfate‐import systems of other bacteria that assimilate sulfate were not identified in the V. fischeri genome. A transposon mutagenesis screen implicated YfbS as a sulfate importer. YfbS is necessary for growth on sulfate and in the marine environment. During symbiosis, a ΔyfbS mutant is attenuated and strongly expresses sulfate‐assimilation genes, which is a phenotype associated with sulfur‐starved cells. Together, these results suggest V. fischeri imports sulfate via YfbS within the squid light organ, which provides insight into the molecular mechanisms by which bacteria harvest sulfur in vivo. The bacterium Vibrio fischeri must acquire sulfur while establishing symbiosis within the squid light organ. In addition to a host‐derived sulfur source related to cystine, V. fischeri assimilates sulfate in vivo. We provide evidence that sulfate import is mediated by the transporter YfbS, which is widely distributed among other Vibrionaceae members.
doi_str_mv 10.1111/mmi.14780
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8514163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575154705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4430-b863fa361883f0c2120a61ceed969bf09a35779ff53c8dadd7389d5759a4039f3</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoMo9ra68A9IwI0upk3mJDPJRiil1kKLG792ITOT9KZMJmPOjOX-e6O3FhXM5gTOw8ObvIS84OyYl3MSYzjmolXsEdlwaGRVa6kekw3TklWg6q8H5BDxljEOrIGn5ABEzWsBekO-fA5dDon6gP3W5UBDnFNekNppoBYxxDDaxSHFdfTlQoc1h-mG4i52IWFAeheWLT1f57yLk6XYpzHNDp-RJ96O6J7fzyPy6d35x7P31dWHi8uz06uqFwJY1akGvIWGKwWe9SUVsw3vnRt0ozvPtAXZttp7Cb0a7DC0oPQgW6mtYKA9HJG3e--8dtENvZuWbEcz5xBt3plkg_l7M4WtuUnfjZJc8AaK4PW9IKdvq8PFxPIVbhzt5NKKppZCgZZS8IK--ge9TWueyvMK1UouRctkod7sqT4nxOz8QxjOzM-6TKnL_KqrsC__TP9A_u6nACd74C6Mbvd_k7m-vtwrfwAwdKCu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575154705</pqid></control><display><type>article</type><title>Vibrio fischeri imports and assimilates sulfate during symbiosis with Euprymna scolopes</title><source>Wiley</source><creator>Wasilko, Nathan P. ; Ceron, Josue S. ; Baker, Emily R. ; Cecere, Andrew G. ; Wollenberg, Michael S. ; Miyashiro, Tim I.</creator><creatorcontrib>Wasilko, Nathan P. ; Ceron, Josue S. ; Baker, Emily R. ; Cecere, Andrew G. ; Wollenberg, Michael S. ; Miyashiro, Tim I.</creatorcontrib><description>Sulfur is in cellular components of bacteria and is, therefore, an element necessary for growth. However, mechanisms by which bacteria satisfy their sulfur needs within a host are poorly understood. Vibrio fischeri is a bacterial symbiont that colonizes, grows, and produces bioluminescence within the light organ of the Hawaiian bobtail squid, which provides an experimental platform for investigating sulfur acquisition in vivo. Like other γ‐proteobacteria, V. fischeri fuels sulfur‐dependent anabolic processes with intracellular cysteine. Within the light organ, the abundance of a ΔcysK mutant, which cannot synthesize cysteine through sulfate assimilation, is attenuated, suggesting sulfate import is necessary for V. fischeri to establish symbiosis. Genes encoding sulfate‐import systems of other bacteria that assimilate sulfate were not identified in the V. fischeri genome. A transposon mutagenesis screen implicated YfbS as a sulfate importer. YfbS is necessary for growth on sulfate and in the marine environment. During symbiosis, a ΔyfbS mutant is attenuated and strongly expresses sulfate‐assimilation genes, which is a phenotype associated with sulfur‐starved cells. Together, these results suggest V. fischeri imports sulfate via YfbS within the squid light organ, which provides insight into the molecular mechanisms by which bacteria harvest sulfur in vivo. The bacterium Vibrio fischeri must acquire sulfur while establishing symbiosis within the squid light organ. In addition to a host‐derived sulfur source related to cystine, V. fischeri assimilates sulfate in vivo. We provide evidence that sulfate import is mediated by the transporter YfbS, which is widely distributed among other Vibrionaceae members.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.14780</identifier><identifier>PMID: 34212439</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Aliivibrio fischeri - physiology ; Animals ; Assimilation ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological Transport ; Bioluminescence ; Cysteine ; Cysteine - metabolism ; Decapodiformes - microbiology ; Genes ; Genomes ; Host Microbial Interactions ; host–microbe interactions ; Imports ; In vivo methods and tests ; Marine environment ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Molecular modelling ; Mutagenesis ; Mutants ; Mutation ; Phenotypes ; Phylogeny ; Squid ; sulfate assimilation ; Sulfates ; Sulfates - metabolism ; Sulfur ; Sulfur - metabolism ; Symbiosis ; transport ; Transposon mutagenesis ; Vibrio ; Vibrio fischeri</subject><ispartof>Molecular microbiology, 2021-09, Vol.116 (3), p.926-942</ispartof><rights>2021 John Wiley &amp; Sons Ltd</rights><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2021 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4430-b863fa361883f0c2120a61ceed969bf09a35779ff53c8dadd7389d5759a4039f3</citedby><cites>FETCH-LOGICAL-c4430-b863fa361883f0c2120a61ceed969bf09a35779ff53c8dadd7389d5759a4039f3</cites><orcidid>0000-0002-5016-1641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34212439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wasilko, Nathan P.</creatorcontrib><creatorcontrib>Ceron, Josue S.</creatorcontrib><creatorcontrib>Baker, Emily R.</creatorcontrib><creatorcontrib>Cecere, Andrew G.</creatorcontrib><creatorcontrib>Wollenberg, Michael S.</creatorcontrib><creatorcontrib>Miyashiro, Tim I.</creatorcontrib><title>Vibrio fischeri imports and assimilates sulfate during symbiosis with Euprymna scolopes</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Sulfur is in cellular components of bacteria and is, therefore, an element necessary for growth. However, mechanisms by which bacteria satisfy their sulfur needs within a host are poorly understood. Vibrio fischeri is a bacterial symbiont that colonizes, grows, and produces bioluminescence within the light organ of the Hawaiian bobtail squid, which provides an experimental platform for investigating sulfur acquisition in vivo. Like other γ‐proteobacteria, V. fischeri fuels sulfur‐dependent anabolic processes with intracellular cysteine. Within the light organ, the abundance of a ΔcysK mutant, which cannot synthesize cysteine through sulfate assimilation, is attenuated, suggesting sulfate import is necessary for V. fischeri to establish symbiosis. Genes encoding sulfate‐import systems of other bacteria that assimilate sulfate were not identified in the V. fischeri genome. A transposon mutagenesis screen implicated YfbS as a sulfate importer. YfbS is necessary for growth on sulfate and in the marine environment. During symbiosis, a ΔyfbS mutant is attenuated and strongly expresses sulfate‐assimilation genes, which is a phenotype associated with sulfur‐starved cells. Together, these results suggest V. fischeri imports sulfate via YfbS within the squid light organ, which provides insight into the molecular mechanisms by which bacteria harvest sulfur in vivo. The bacterium Vibrio fischeri must acquire sulfur while establishing symbiosis within the squid light organ. In addition to a host‐derived sulfur source related to cystine, V. fischeri assimilates sulfate in vivo. We provide evidence that sulfate import is mediated by the transporter YfbS, which is widely distributed among other Vibrionaceae members.</description><subject>Aliivibrio fischeri - physiology</subject><subject>Animals</subject><subject>Assimilation</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Transport</subject><subject>Bioluminescence</subject><subject>Cysteine</subject><subject>Cysteine - metabolism</subject><subject>Decapodiformes - microbiology</subject><subject>Genes</subject><subject>Genomes</subject><subject>Host Microbial Interactions</subject><subject>host–microbe interactions</subject><subject>Imports</subject><subject>In vivo methods and tests</subject><subject>Marine environment</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Molecular modelling</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Phenotypes</subject><subject>Phylogeny</subject><subject>Squid</subject><subject>sulfate assimilation</subject><subject>Sulfates</subject><subject>Sulfates - metabolism</subject><subject>Sulfur</subject><subject>Sulfur - metabolism</subject><subject>Symbiosis</subject><subject>transport</subject><subject>Transposon mutagenesis</subject><subject>Vibrio</subject><subject>Vibrio fischeri</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kU1rFTEUhoMo9ra68A9IwI0upk3mJDPJRiil1kKLG792ITOT9KZMJmPOjOX-e6O3FhXM5gTOw8ObvIS84OyYl3MSYzjmolXsEdlwaGRVa6kekw3TklWg6q8H5BDxljEOrIGn5ABEzWsBekO-fA5dDon6gP3W5UBDnFNekNppoBYxxDDaxSHFdfTlQoc1h-mG4i52IWFAeheWLT1f57yLk6XYpzHNDp-RJ96O6J7fzyPy6d35x7P31dWHi8uz06uqFwJY1akGvIWGKwWe9SUVsw3vnRt0ozvPtAXZttp7Cb0a7DC0oPQgW6mtYKA9HJG3e--8dtENvZuWbEcz5xBt3plkg_l7M4WtuUnfjZJc8AaK4PW9IKdvq8PFxPIVbhzt5NKKppZCgZZS8IK--ge9TWueyvMK1UouRctkod7sqT4nxOz8QxjOzM-6TKnL_KqrsC__TP9A_u6nACd74C6Mbvd_k7m-vtwrfwAwdKCu</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Wasilko, Nathan P.</creator><creator>Ceron, Josue S.</creator><creator>Baker, Emily R.</creator><creator>Cecere, Andrew G.</creator><creator>Wollenberg, Michael S.</creator><creator>Miyashiro, Tim I.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5016-1641</orcidid></search><sort><creationdate>202109</creationdate><title>Vibrio fischeri imports and assimilates sulfate during symbiosis with Euprymna scolopes</title><author>Wasilko, Nathan P. ; Ceron, Josue S. ; Baker, Emily R. ; Cecere, Andrew G. ; Wollenberg, Michael S. ; Miyashiro, Tim I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4430-b863fa361883f0c2120a61ceed969bf09a35779ff53c8dadd7389d5759a4039f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aliivibrio fischeri - physiology</topic><topic>Animals</topic><topic>Assimilation</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Transport</topic><topic>Bioluminescence</topic><topic>Cysteine</topic><topic>Cysteine - metabolism</topic><topic>Decapodiformes - microbiology</topic><topic>Genes</topic><topic>Genomes</topic><topic>Host Microbial Interactions</topic><topic>host–microbe interactions</topic><topic>Imports</topic><topic>In vivo methods and tests</topic><topic>Marine environment</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Molecular modelling</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Phenotypes</topic><topic>Phylogeny</topic><topic>Squid</topic><topic>sulfate assimilation</topic><topic>Sulfates</topic><topic>Sulfates - metabolism</topic><topic>Sulfur</topic><topic>Sulfur - metabolism</topic><topic>Symbiosis</topic><topic>transport</topic><topic>Transposon mutagenesis</topic><topic>Vibrio</topic><topic>Vibrio fischeri</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wasilko, Nathan P.</creatorcontrib><creatorcontrib>Ceron, Josue S.</creatorcontrib><creatorcontrib>Baker, Emily R.</creatorcontrib><creatorcontrib>Cecere, Andrew G.</creatorcontrib><creatorcontrib>Wollenberg, Michael S.</creatorcontrib><creatorcontrib>Miyashiro, Tim I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wasilko, Nathan P.</au><au>Ceron, Josue S.</au><au>Baker, Emily R.</au><au>Cecere, Andrew G.</au><au>Wollenberg, Michael S.</au><au>Miyashiro, Tim I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibrio fischeri imports and assimilates sulfate during symbiosis with Euprymna scolopes</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2021-09</date><risdate>2021</risdate><volume>116</volume><issue>3</issue><spage>926</spage><epage>942</epage><pages>926-942</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Sulfur is in cellular components of bacteria and is, therefore, an element necessary for growth. However, mechanisms by which bacteria satisfy their sulfur needs within a host are poorly understood. Vibrio fischeri is a bacterial symbiont that colonizes, grows, and produces bioluminescence within the light organ of the Hawaiian bobtail squid, which provides an experimental platform for investigating sulfur acquisition in vivo. Like other γ‐proteobacteria, V. fischeri fuels sulfur‐dependent anabolic processes with intracellular cysteine. Within the light organ, the abundance of a ΔcysK mutant, which cannot synthesize cysteine through sulfate assimilation, is attenuated, suggesting sulfate import is necessary for V. fischeri to establish symbiosis. Genes encoding sulfate‐import systems of other bacteria that assimilate sulfate were not identified in the V. fischeri genome. A transposon mutagenesis screen implicated YfbS as a sulfate importer. YfbS is necessary for growth on sulfate and in the marine environment. During symbiosis, a ΔyfbS mutant is attenuated and strongly expresses sulfate‐assimilation genes, which is a phenotype associated with sulfur‐starved cells. Together, these results suggest V. fischeri imports sulfate via YfbS within the squid light organ, which provides insight into the molecular mechanisms by which bacteria harvest sulfur in vivo. The bacterium Vibrio fischeri must acquire sulfur while establishing symbiosis within the squid light organ. In addition to a host‐derived sulfur source related to cystine, V. fischeri assimilates sulfate in vivo. We provide evidence that sulfate import is mediated by the transporter YfbS, which is widely distributed among other Vibrionaceae members.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>34212439</pmid><doi>10.1111/mmi.14780</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5016-1641</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2021-09, Vol.116 (3), p.926-942
issn 0950-382X
1365-2958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8514163
source Wiley
subjects Aliivibrio fischeri - physiology
Animals
Assimilation
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological Transport
Bioluminescence
Cysteine
Cysteine - metabolism
Decapodiformes - microbiology
Genes
Genomes
Host Microbial Interactions
host–microbe interactions
Imports
In vivo methods and tests
Marine environment
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Molecular modelling
Mutagenesis
Mutants
Mutation
Phenotypes
Phylogeny
Squid
sulfate assimilation
Sulfates
Sulfates - metabolism
Sulfur
Sulfur - metabolism
Symbiosis
transport
Transposon mutagenesis
Vibrio
Vibrio fischeri
title Vibrio fischeri imports and assimilates sulfate during symbiosis with Euprymna scolopes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibrio%20fischeri%20imports%20and%20assimilates%20sulfate%20during%20symbiosis%20with%20Euprymna%20scolopes&rft.jtitle=Molecular%20microbiology&rft.au=Wasilko,%20Nathan%20P.&rft.date=2021-09&rft.volume=116&rft.issue=3&rft.spage=926&rft.epage=942&rft.pages=926-942&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.14780&rft_dat=%3Cproquest_pubme%3E2575154705%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4430-b863fa361883f0c2120a61ceed969bf09a35779ff53c8dadd7389d5759a4039f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2575154705&rft_id=info:pmid/34212439&rfr_iscdi=true