Loading…

New insights into the conversion of electropherograms to the effective electrophoretic mobility scale

CE–MS is increasingly gaining momentum as an analytical tool in metabolomics, due to its ability to obtain information about the most polar elements in biological samples. This has been helped by improvements of robustness in peak identification by means of mobility‐scale representations of the elec...

Full description

Saved in:
Bibliographic Details
Published in:Electrophoresis 2021-10, Vol.42 (19), p.1875-1884
Main Authors: Codesido, Santiago, Drouin, Nicolas, Ferré, Sabrina, Schappler, Julie, Rudaz, Serge, González‐Ruiz, Víctor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CE–MS is increasingly gaining momentum as an analytical tool in metabolomics, due to its ability to obtain information about the most polar elements in biological samples. This has been helped by improvements of robustness in peak identification by means of mobility‐scale representations of the electropherograms (mobilograms). As a necessary step toward facilitating the use of CE–MS for untargeted metabolomics data, the authors previously developed and introduced ROMANCE, a software automating mobilogram generation for large untargeted datasets through a simple and self‐contained user interface. Herein, we introduce a new version of ROMANCE including new features such as compatibility with other types of data (targeted MS data and 2D UV‐Vis absorption‐like electropherograms), and the much needed additional flexibility in the transformation parameters (including field ramping and the use of secondary markers), more measurement conditions (depending on detection and integration modes), and most importantly tackling the issue of quantitative peak conversion. First, we present a review of the current theoretical framework with regard to peak characterization, and we develop new formulas for multiple marker peak area corrections, for anticipating peak position precision, and for assessing peak shape distortion. Then, the new version of the software is presented and validated experimentally. We contrast the multiple marker mobility transformations with previous results, finding increased peak position precision, and finally we showcase an application to actual untargeted metabolomics data.
ISSN:0173-0835
1522-2683
1522-2683
DOI:10.1002/elps.202000333