Loading…

Raman imaging of Micrasterias: new insights into shape formation

The algae Micrasterias with its star-shaped cell pattern is a perfect unicellular model system to study morphogenesis. How the indentations are formed in the primary cell wall at exactly defined areas puzzled scientists for decades, and they searched for chemical differences in the primary wall of t...

Full description

Saved in:
Bibliographic Details
Published in:Protoplasma 2021-11, Vol.258 (6), p.1323-1334
Main Authors: Felhofer, Martin, Mayr, Konrad, Lütz-Meindl, Ursula, Gierlinger, Notburga
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-126b99397ca940b0108aa3f5e67007b0892e69919abc6dabc81c7c6446ecf7bd3
cites cdi_FETCH-LOGICAL-c474t-126b99397ca940b0108aa3f5e67007b0892e69919abc6dabc81c7c6446ecf7bd3
container_end_page 1334
container_issue 6
container_start_page 1323
container_title Protoplasma
container_volume 258
creator Felhofer, Martin
Mayr, Konrad
Lütz-Meindl, Ursula
Gierlinger, Notburga
description The algae Micrasterias with its star-shaped cell pattern is a perfect unicellular model system to study morphogenesis. How the indentations are formed in the primary cell wall at exactly defined areas puzzled scientists for decades, and they searched for chemical differences in the primary wall of the extending tips compared to the resting indents. We now tackled the question by Raman imaging and scanned  in situ   Micrasterias cells at different stages of development. Thousands of Raman spectra were acquired from the mother cell and the developing semicell to calculate chemical images based on an algorithm finding the most different Raman spectra. Each of those spectra had characteristic Raman bands, which were assigned to molecular vibrations of BaSO 4 , proteins, lipids, starch, and plant cell wall carbohydrates. Visualizing the cell wall carbohydrates revealed a cell wall thickening at the indentations of the primary cell wall of the growing semicell and uniplanar orientation of the cellulose microfibrils to the cell surface in the secondary cell wall. Crystalline cellulose dominated in the secondary cell wall spectra, while in the primary cell wall spectra, also xyloglucan and pectin were reflected. Spectral differences between the indent and tip region of the primary cell wall were scarce, but a spectral mixing approach pointed to more cellulose fibrils deposited in the indent region. Therefore, we suggest that cell wall thickening together with a denser network of cellulose microfibrils stiffens the cell wall at the indent and induces different cell wall extensibility to shape the lobes.
doi_str_mv 10.1007/s00709-021-01685-3
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8523415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582892164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-126b99397ca940b0108aa3f5e67007b0892e69919abc6dabc81c7c6446ecf7bd3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJ6W6S_oEegiGXXNyMPm31UFpC0ga2FEICuQlZK3u12NJW8jbk30db56s99DISzDPvvMOL0AcMHzFAdZpyAVkCwSVgUfOSvkFzLDAvBQayh-YAlJa4prcztJ_SGgA4Af4OzSgjkjAgc_TlSg_aF27QnfNdEdrihzNRp9FGp9Onwtu7wvnkutWY8mcMRVrpjS3aEAc9uuAP0dtW98m-f3wP0M3F-fXZ93Lx89vl2ddFaVjFxhIT0UhJZWW0ZNAAhlpr2nIrqnxFA7UkVkiJpW6MWOZSY1MZwZiwpq2aJT1AnyfdzbYZ7NJYP0bdq03M1uO9CtqpvzverVQXfquaE8owzwInjwIx_NraNKrBJWP7XnsbtkkRzhnlWBCW0eN_0HXYRp_Py1RNslcsdhSZKBNDStG2z2YwqF1AagpI5YDUn4AUzUNHr894HnlKJAN0AlJu-c7Gl93_kX0AdkebdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582892164</pqid></control><display><type>article</type><title>Raman imaging of Micrasterias: new insights into shape formation</title><source>Springer Nature</source><creator>Felhofer, Martin ; Mayr, Konrad ; Lütz-Meindl, Ursula ; Gierlinger, Notburga</creator><creatorcontrib>Felhofer, Martin ; Mayr, Konrad ; Lütz-Meindl, Ursula ; Gierlinger, Notburga</creatorcontrib><description>The algae Micrasterias with its star-shaped cell pattern is a perfect unicellular model system to study morphogenesis. How the indentations are formed in the primary cell wall at exactly defined areas puzzled scientists for decades, and they searched for chemical differences in the primary wall of the extending tips compared to the resting indents. We now tackled the question by Raman imaging and scanned  in situ   Micrasterias cells at different stages of development. Thousands of Raman spectra were acquired from the mother cell and the developing semicell to calculate chemical images based on an algorithm finding the most different Raman spectra. Each of those spectra had characteristic Raman bands, which were assigned to molecular vibrations of BaSO 4 , proteins, lipids, starch, and plant cell wall carbohydrates. Visualizing the cell wall carbohydrates revealed a cell wall thickening at the indentations of the primary cell wall of the growing semicell and uniplanar orientation of the cellulose microfibrils to the cell surface in the secondary cell wall. Crystalline cellulose dominated in the secondary cell wall spectra, while in the primary cell wall spectra, also xyloglucan and pectin were reflected. Spectral differences between the indent and tip region of the primary cell wall were scarce, but a spectral mixing approach pointed to more cellulose fibrils deposited in the indent region. Therefore, we suggest that cell wall thickening together with a denser network of cellulose microfibrils stiffens the cell wall at the indent and induces different cell wall extensibility to shape the lobes.</description><identifier>ISSN: 0033-183X</identifier><identifier>ISSN: 1615-6102</identifier><identifier>EISSN: 1615-6102</identifier><identifier>DOI: 10.1007/s00709-021-01685-3</identifier><identifier>PMID: 34292402</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algae ; Biomedical and Life Sciences ; Carbohydrates ; Cell Biology ; Cell surface ; Cell Wall ; Cell walls ; Cellulose ; Fibrils ; Life Sciences ; Lipids ; Micrasterias ; Microfibrils ; Morphogenesis ; Original ; Original Article ; Pectin ; Pectins ; Plant Sciences ; Raman spectroscopy ; Vibrations ; Xyloglucan ; Zoology</subject><ispartof>Protoplasma, 2021-11, Vol.258 (6), p.1323-1334</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-126b99397ca940b0108aa3f5e67007b0892e69919abc6dabc81c7c6446ecf7bd3</citedby><cites>FETCH-LOGICAL-c474t-126b99397ca940b0108aa3f5e67007b0892e69919abc6dabc81c7c6446ecf7bd3</cites><orcidid>0000-0002-3699-9931 ; 0000-0002-8803-068X ; 0000-0002-1080-1720 ; 0000-0002-0701-3790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34292402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Felhofer, Martin</creatorcontrib><creatorcontrib>Mayr, Konrad</creatorcontrib><creatorcontrib>Lütz-Meindl, Ursula</creatorcontrib><creatorcontrib>Gierlinger, Notburga</creatorcontrib><title>Raman imaging of Micrasterias: new insights into shape formation</title><title>Protoplasma</title><addtitle>Protoplasma</addtitle><addtitle>Protoplasma</addtitle><description>The algae Micrasterias with its star-shaped cell pattern is a perfect unicellular model system to study morphogenesis. How the indentations are formed in the primary cell wall at exactly defined areas puzzled scientists for decades, and they searched for chemical differences in the primary wall of the extending tips compared to the resting indents. We now tackled the question by Raman imaging and scanned  in situ   Micrasterias cells at different stages of development. Thousands of Raman spectra were acquired from the mother cell and the developing semicell to calculate chemical images based on an algorithm finding the most different Raman spectra. Each of those spectra had characteristic Raman bands, which were assigned to molecular vibrations of BaSO 4 , proteins, lipids, starch, and plant cell wall carbohydrates. Visualizing the cell wall carbohydrates revealed a cell wall thickening at the indentations of the primary cell wall of the growing semicell and uniplanar orientation of the cellulose microfibrils to the cell surface in the secondary cell wall. Crystalline cellulose dominated in the secondary cell wall spectra, while in the primary cell wall spectra, also xyloglucan and pectin were reflected. Spectral differences between the indent and tip region of the primary cell wall were scarce, but a spectral mixing approach pointed to more cellulose fibrils deposited in the indent region. Therefore, we suggest that cell wall thickening together with a denser network of cellulose microfibrils stiffens the cell wall at the indent and induces different cell wall extensibility to shape the lobes.</description><subject>Algae</subject><subject>Biomedical and Life Sciences</subject><subject>Carbohydrates</subject><subject>Cell Biology</subject><subject>Cell surface</subject><subject>Cell Wall</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Fibrils</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Micrasterias</subject><subject>Microfibrils</subject><subject>Morphogenesis</subject><subject>Original</subject><subject>Original Article</subject><subject>Pectin</subject><subject>Pectins</subject><subject>Plant Sciences</subject><subject>Raman spectroscopy</subject><subject>Vibrations</subject><subject>Xyloglucan</subject><subject>Zoology</subject><issn>0033-183X</issn><issn>1615-6102</issn><issn>1615-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVJ6W6S_oEegiGXXNyMPm31UFpC0ga2FEICuQlZK3u12NJW8jbk30db56s99DISzDPvvMOL0AcMHzFAdZpyAVkCwSVgUfOSvkFzLDAvBQayh-YAlJa4prcztJ_SGgA4Af4OzSgjkjAgc_TlSg_aF27QnfNdEdrihzNRp9FGp9Onwtu7wvnkutWY8mcMRVrpjS3aEAc9uuAP0dtW98m-f3wP0M3F-fXZ93Lx89vl2ddFaVjFxhIT0UhJZWW0ZNAAhlpr2nIrqnxFA7UkVkiJpW6MWOZSY1MZwZiwpq2aJT1AnyfdzbYZ7NJYP0bdq03M1uO9CtqpvzverVQXfquaE8owzwInjwIx_NraNKrBJWP7XnsbtkkRzhnlWBCW0eN_0HXYRp_Py1RNslcsdhSZKBNDStG2z2YwqF1AagpI5YDUn4AUzUNHr894HnlKJAN0AlJu-c7Gl93_kX0AdkebdQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Felhofer, Martin</creator><creator>Mayr, Konrad</creator><creator>Lütz-Meindl, Ursula</creator><creator>Gierlinger, Notburga</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3699-9931</orcidid><orcidid>https://orcid.org/0000-0002-8803-068X</orcidid><orcidid>https://orcid.org/0000-0002-1080-1720</orcidid><orcidid>https://orcid.org/0000-0002-0701-3790</orcidid></search><sort><creationdate>20211101</creationdate><title>Raman imaging of Micrasterias: new insights into shape formation</title><author>Felhofer, Martin ; Mayr, Konrad ; Lütz-Meindl, Ursula ; Gierlinger, Notburga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-126b99397ca940b0108aa3f5e67007b0892e69919abc6dabc81c7c6446ecf7bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algae</topic><topic>Biomedical and Life Sciences</topic><topic>Carbohydrates</topic><topic>Cell Biology</topic><topic>Cell surface</topic><topic>Cell Wall</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Fibrils</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Micrasterias</topic><topic>Microfibrils</topic><topic>Morphogenesis</topic><topic>Original</topic><topic>Original Article</topic><topic>Pectin</topic><topic>Pectins</topic><topic>Plant Sciences</topic><topic>Raman spectroscopy</topic><topic>Vibrations</topic><topic>Xyloglucan</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Felhofer, Martin</creatorcontrib><creatorcontrib>Mayr, Konrad</creatorcontrib><creatorcontrib>Lütz-Meindl, Ursula</creatorcontrib><creatorcontrib>Gierlinger, Notburga</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protoplasma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Felhofer, Martin</au><au>Mayr, Konrad</au><au>Lütz-Meindl, Ursula</au><au>Gierlinger, Notburga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raman imaging of Micrasterias: new insights into shape formation</atitle><jtitle>Protoplasma</jtitle><stitle>Protoplasma</stitle><addtitle>Protoplasma</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>258</volume><issue>6</issue><spage>1323</spage><epage>1334</epage><pages>1323-1334</pages><issn>0033-183X</issn><issn>1615-6102</issn><eissn>1615-6102</eissn><abstract>The algae Micrasterias with its star-shaped cell pattern is a perfect unicellular model system to study morphogenesis. How the indentations are formed in the primary cell wall at exactly defined areas puzzled scientists for decades, and they searched for chemical differences in the primary wall of the extending tips compared to the resting indents. We now tackled the question by Raman imaging and scanned  in situ   Micrasterias cells at different stages of development. Thousands of Raman spectra were acquired from the mother cell and the developing semicell to calculate chemical images based on an algorithm finding the most different Raman spectra. Each of those spectra had characteristic Raman bands, which were assigned to molecular vibrations of BaSO 4 , proteins, lipids, starch, and plant cell wall carbohydrates. Visualizing the cell wall carbohydrates revealed a cell wall thickening at the indentations of the primary cell wall of the growing semicell and uniplanar orientation of the cellulose microfibrils to the cell surface in the secondary cell wall. Crystalline cellulose dominated in the secondary cell wall spectra, while in the primary cell wall spectra, also xyloglucan and pectin were reflected. Spectral differences between the indent and tip region of the primary cell wall were scarce, but a spectral mixing approach pointed to more cellulose fibrils deposited in the indent region. Therefore, we suggest that cell wall thickening together with a denser network of cellulose microfibrils stiffens the cell wall at the indent and induces different cell wall extensibility to shape the lobes.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>34292402</pmid><doi>10.1007/s00709-021-01685-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3699-9931</orcidid><orcidid>https://orcid.org/0000-0002-8803-068X</orcidid><orcidid>https://orcid.org/0000-0002-1080-1720</orcidid><orcidid>https://orcid.org/0000-0002-0701-3790</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-183X
ispartof Protoplasma, 2021-11, Vol.258 (6), p.1323-1334
issn 0033-183X
1615-6102
1615-6102
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8523415
source Springer Nature
subjects Algae
Biomedical and Life Sciences
Carbohydrates
Cell Biology
Cell surface
Cell Wall
Cell walls
Cellulose
Fibrils
Life Sciences
Lipids
Micrasterias
Microfibrils
Morphogenesis
Original
Original Article
Pectin
Pectins
Plant Sciences
Raman spectroscopy
Vibrations
Xyloglucan
Zoology
title Raman imaging of Micrasterias: new insights into shape formation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raman%20imaging%20of%20Micrasterias:%20new%20insights%20into%20shape%20formation&rft.jtitle=Protoplasma&rft.au=Felhofer,%20Martin&rft.date=2021-11-01&rft.volume=258&rft.issue=6&rft.spage=1323&rft.epage=1334&rft.pages=1323-1334&rft.issn=0033-183X&rft.eissn=1615-6102&rft_id=info:doi/10.1007/s00709-021-01685-3&rft_dat=%3Cproquest_pubme%3E2582892164%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-126b99397ca940b0108aa3f5e67007b0892e69919abc6dabc81c7c6446ecf7bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582892164&rft_id=info:pmid/34292402&rfr_iscdi=true