Loading…
Raman imaging of Micrasterias: new insights into shape formation
The algae Micrasterias with its star-shaped cell pattern is a perfect unicellular model system to study morphogenesis. How the indentations are formed in the primary cell wall at exactly defined areas puzzled scientists for decades, and they searched for chemical differences in the primary wall of t...
Saved in:
Published in: | Protoplasma 2021-11, Vol.258 (6), p.1323-1334 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-126b99397ca940b0108aa3f5e67007b0892e69919abc6dabc81c7c6446ecf7bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-126b99397ca940b0108aa3f5e67007b0892e69919abc6dabc81c7c6446ecf7bd3 |
container_end_page | 1334 |
container_issue | 6 |
container_start_page | 1323 |
container_title | Protoplasma |
container_volume | 258 |
creator | Felhofer, Martin Mayr, Konrad Lütz-Meindl, Ursula Gierlinger, Notburga |
description | The algae
Micrasterias
with its star-shaped cell pattern is a perfect unicellular model system to study morphogenesis. How the indentations are formed in the primary cell wall at exactly defined areas puzzled scientists for decades, and they searched for chemical differences in the primary wall of the extending tips compared to the resting indents. We now tackled the question by Raman imaging and scanned
in situ
Micrasterias
cells at different stages of development. Thousands of Raman spectra were acquired from the mother cell and the developing semicell to calculate chemical images based on an algorithm finding the most different Raman spectra. Each of those spectra had characteristic Raman bands, which were assigned to molecular vibrations of BaSO
4
, proteins, lipids, starch, and plant cell wall carbohydrates. Visualizing the cell wall carbohydrates revealed a cell wall thickening at the indentations of the primary cell wall of the growing semicell and uniplanar orientation of the cellulose microfibrils to the cell surface in the secondary cell wall. Crystalline cellulose dominated in the secondary cell wall spectra, while in the primary cell wall spectra, also xyloglucan and pectin were reflected. Spectral differences between the indent and tip region of the primary cell wall were scarce, but a spectral mixing approach pointed to more cellulose fibrils deposited in the indent region. Therefore, we suggest that cell wall thickening together with a denser network of cellulose microfibrils stiffens the cell wall at the indent and induces different cell wall extensibility to shape the lobes. |
doi_str_mv | 10.1007/s00709-021-01685-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8523415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582892164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-126b99397ca940b0108aa3f5e67007b0892e69919abc6dabc81c7c6446ecf7bd3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJ6W6S_oEegiGXXNyMPm31UFpC0ga2FEICuQlZK3u12NJW8jbk30db56s99DISzDPvvMOL0AcMHzFAdZpyAVkCwSVgUfOSvkFzLDAvBQayh-YAlJa4prcztJ_SGgA4Af4OzSgjkjAgc_TlSg_aF27QnfNdEdrihzNRp9FGp9Onwtu7wvnkutWY8mcMRVrpjS3aEAc9uuAP0dtW98m-f3wP0M3F-fXZ93Lx89vl2ddFaVjFxhIT0UhJZWW0ZNAAhlpr2nIrqnxFA7UkVkiJpW6MWOZSY1MZwZiwpq2aJT1AnyfdzbYZ7NJYP0bdq03M1uO9CtqpvzverVQXfquaE8owzwInjwIx_NraNKrBJWP7XnsbtkkRzhnlWBCW0eN_0HXYRp_Py1RNslcsdhSZKBNDStG2z2YwqF1AagpI5YDUn4AUzUNHr894HnlKJAN0AlJu-c7Gl93_kX0AdkebdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582892164</pqid></control><display><type>article</type><title>Raman imaging of Micrasterias: new insights into shape formation</title><source>Springer Nature</source><creator>Felhofer, Martin ; Mayr, Konrad ; Lütz-Meindl, Ursula ; Gierlinger, Notburga</creator><creatorcontrib>Felhofer, Martin ; Mayr, Konrad ; Lütz-Meindl, Ursula ; Gierlinger, Notburga</creatorcontrib><description>The algae
Micrasterias
with its star-shaped cell pattern is a perfect unicellular model system to study morphogenesis. How the indentations are formed in the primary cell wall at exactly defined areas puzzled scientists for decades, and they searched for chemical differences in the primary wall of the extending tips compared to the resting indents. We now tackled the question by Raman imaging and scanned
in situ
Micrasterias
cells at different stages of development. Thousands of Raman spectra were acquired from the mother cell and the developing semicell to calculate chemical images based on an algorithm finding the most different Raman spectra. Each of those spectra had characteristic Raman bands, which were assigned to molecular vibrations of BaSO
4
, proteins, lipids, starch, and plant cell wall carbohydrates. Visualizing the cell wall carbohydrates revealed a cell wall thickening at the indentations of the primary cell wall of the growing semicell and uniplanar orientation of the cellulose microfibrils to the cell surface in the secondary cell wall. Crystalline cellulose dominated in the secondary cell wall spectra, while in the primary cell wall spectra, also xyloglucan and pectin were reflected. Spectral differences between the indent and tip region of the primary cell wall were scarce, but a spectral mixing approach pointed to more cellulose fibrils deposited in the indent region. Therefore, we suggest that cell wall thickening together with a denser network of cellulose microfibrils stiffens the cell wall at the indent and induces different cell wall extensibility to shape the lobes.</description><identifier>ISSN: 0033-183X</identifier><identifier>ISSN: 1615-6102</identifier><identifier>EISSN: 1615-6102</identifier><identifier>DOI: 10.1007/s00709-021-01685-3</identifier><identifier>PMID: 34292402</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algae ; Biomedical and Life Sciences ; Carbohydrates ; Cell Biology ; Cell surface ; Cell Wall ; Cell walls ; Cellulose ; Fibrils ; Life Sciences ; Lipids ; Micrasterias ; Microfibrils ; Morphogenesis ; Original ; Original Article ; Pectin ; Pectins ; Plant Sciences ; Raman spectroscopy ; Vibrations ; Xyloglucan ; Zoology</subject><ispartof>Protoplasma, 2021-11, Vol.258 (6), p.1323-1334</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-126b99397ca940b0108aa3f5e67007b0892e69919abc6dabc81c7c6446ecf7bd3</citedby><cites>FETCH-LOGICAL-c474t-126b99397ca940b0108aa3f5e67007b0892e69919abc6dabc81c7c6446ecf7bd3</cites><orcidid>0000-0002-3699-9931 ; 0000-0002-8803-068X ; 0000-0002-1080-1720 ; 0000-0002-0701-3790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34292402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Felhofer, Martin</creatorcontrib><creatorcontrib>Mayr, Konrad</creatorcontrib><creatorcontrib>Lütz-Meindl, Ursula</creatorcontrib><creatorcontrib>Gierlinger, Notburga</creatorcontrib><title>Raman imaging of Micrasterias: new insights into shape formation</title><title>Protoplasma</title><addtitle>Protoplasma</addtitle><addtitle>Protoplasma</addtitle><description>The algae
Micrasterias
with its star-shaped cell pattern is a perfect unicellular model system to study morphogenesis. How the indentations are formed in the primary cell wall at exactly defined areas puzzled scientists for decades, and they searched for chemical differences in the primary wall of the extending tips compared to the resting indents. We now tackled the question by Raman imaging and scanned
in situ
Micrasterias
cells at different stages of development. Thousands of Raman spectra were acquired from the mother cell and the developing semicell to calculate chemical images based on an algorithm finding the most different Raman spectra. Each of those spectra had characteristic Raman bands, which were assigned to molecular vibrations of BaSO
4
, proteins, lipids, starch, and plant cell wall carbohydrates. Visualizing the cell wall carbohydrates revealed a cell wall thickening at the indentations of the primary cell wall of the growing semicell and uniplanar orientation of the cellulose microfibrils to the cell surface in the secondary cell wall. Crystalline cellulose dominated in the secondary cell wall spectra, while in the primary cell wall spectra, also xyloglucan and pectin were reflected. Spectral differences between the indent and tip region of the primary cell wall were scarce, but a spectral mixing approach pointed to more cellulose fibrils deposited in the indent region. Therefore, we suggest that cell wall thickening together with a denser network of cellulose microfibrils stiffens the cell wall at the indent and induces different cell wall extensibility to shape the lobes.</description><subject>Algae</subject><subject>Biomedical and Life Sciences</subject><subject>Carbohydrates</subject><subject>Cell Biology</subject><subject>Cell surface</subject><subject>Cell Wall</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Fibrils</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Micrasterias</subject><subject>Microfibrils</subject><subject>Morphogenesis</subject><subject>Original</subject><subject>Original Article</subject><subject>Pectin</subject><subject>Pectins</subject><subject>Plant Sciences</subject><subject>Raman spectroscopy</subject><subject>Vibrations</subject><subject>Xyloglucan</subject><subject>Zoology</subject><issn>0033-183X</issn><issn>1615-6102</issn><issn>1615-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVJ6W6S_oEegiGXXNyMPm31UFpC0ga2FEICuQlZK3u12NJW8jbk30db56s99DISzDPvvMOL0AcMHzFAdZpyAVkCwSVgUfOSvkFzLDAvBQayh-YAlJa4prcztJ_SGgA4Af4OzSgjkjAgc_TlSg_aF27QnfNdEdrihzNRp9FGp9Onwtu7wvnkutWY8mcMRVrpjS3aEAc9uuAP0dtW98m-f3wP0M3F-fXZ93Lx89vl2ddFaVjFxhIT0UhJZWW0ZNAAhlpr2nIrqnxFA7UkVkiJpW6MWOZSY1MZwZiwpq2aJT1AnyfdzbYZ7NJYP0bdq03M1uO9CtqpvzverVQXfquaE8owzwInjwIx_NraNKrBJWP7XnsbtkkRzhnlWBCW0eN_0HXYRp_Py1RNslcsdhSZKBNDStG2z2YwqF1AagpI5YDUn4AUzUNHr894HnlKJAN0AlJu-c7Gl93_kX0AdkebdQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Felhofer, Martin</creator><creator>Mayr, Konrad</creator><creator>Lütz-Meindl, Ursula</creator><creator>Gierlinger, Notburga</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3699-9931</orcidid><orcidid>https://orcid.org/0000-0002-8803-068X</orcidid><orcidid>https://orcid.org/0000-0002-1080-1720</orcidid><orcidid>https://orcid.org/0000-0002-0701-3790</orcidid></search><sort><creationdate>20211101</creationdate><title>Raman imaging of Micrasterias: new insights into shape formation</title><author>Felhofer, Martin ; Mayr, Konrad ; Lütz-Meindl, Ursula ; Gierlinger, Notburga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-126b99397ca940b0108aa3f5e67007b0892e69919abc6dabc81c7c6446ecf7bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algae</topic><topic>Biomedical and Life Sciences</topic><topic>Carbohydrates</topic><topic>Cell Biology</topic><topic>Cell surface</topic><topic>Cell Wall</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Fibrils</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Micrasterias</topic><topic>Microfibrils</topic><topic>Morphogenesis</topic><topic>Original</topic><topic>Original Article</topic><topic>Pectin</topic><topic>Pectins</topic><topic>Plant Sciences</topic><topic>Raman spectroscopy</topic><topic>Vibrations</topic><topic>Xyloglucan</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Felhofer, Martin</creatorcontrib><creatorcontrib>Mayr, Konrad</creatorcontrib><creatorcontrib>Lütz-Meindl, Ursula</creatorcontrib><creatorcontrib>Gierlinger, Notburga</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protoplasma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Felhofer, Martin</au><au>Mayr, Konrad</au><au>Lütz-Meindl, Ursula</au><au>Gierlinger, Notburga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raman imaging of Micrasterias: new insights into shape formation</atitle><jtitle>Protoplasma</jtitle><stitle>Protoplasma</stitle><addtitle>Protoplasma</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>258</volume><issue>6</issue><spage>1323</spage><epage>1334</epage><pages>1323-1334</pages><issn>0033-183X</issn><issn>1615-6102</issn><eissn>1615-6102</eissn><abstract>The algae
Micrasterias
with its star-shaped cell pattern is a perfect unicellular model system to study morphogenesis. How the indentations are formed in the primary cell wall at exactly defined areas puzzled scientists for decades, and they searched for chemical differences in the primary wall of the extending tips compared to the resting indents. We now tackled the question by Raman imaging and scanned
in situ
Micrasterias
cells at different stages of development. Thousands of Raman spectra were acquired from the mother cell and the developing semicell to calculate chemical images based on an algorithm finding the most different Raman spectra. Each of those spectra had characteristic Raman bands, which were assigned to molecular vibrations of BaSO
4
, proteins, lipids, starch, and plant cell wall carbohydrates. Visualizing the cell wall carbohydrates revealed a cell wall thickening at the indentations of the primary cell wall of the growing semicell and uniplanar orientation of the cellulose microfibrils to the cell surface in the secondary cell wall. Crystalline cellulose dominated in the secondary cell wall spectra, while in the primary cell wall spectra, also xyloglucan and pectin were reflected. Spectral differences between the indent and tip region of the primary cell wall were scarce, but a spectral mixing approach pointed to more cellulose fibrils deposited in the indent region. Therefore, we suggest that cell wall thickening together with a denser network of cellulose microfibrils stiffens the cell wall at the indent and induces different cell wall extensibility to shape the lobes.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>34292402</pmid><doi>10.1007/s00709-021-01685-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3699-9931</orcidid><orcidid>https://orcid.org/0000-0002-8803-068X</orcidid><orcidid>https://orcid.org/0000-0002-1080-1720</orcidid><orcidid>https://orcid.org/0000-0002-0701-3790</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-183X |
ispartof | Protoplasma, 2021-11, Vol.258 (6), p.1323-1334 |
issn | 0033-183X 1615-6102 1615-6102 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8523415 |
source | Springer Nature |
subjects | Algae Biomedical and Life Sciences Carbohydrates Cell Biology Cell surface Cell Wall Cell walls Cellulose Fibrils Life Sciences Lipids Micrasterias Microfibrils Morphogenesis Original Original Article Pectin Pectins Plant Sciences Raman spectroscopy Vibrations Xyloglucan Zoology |
title | Raman imaging of Micrasterias: new insights into shape formation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raman%20imaging%20of%20Micrasterias:%20new%20insights%20into%20shape%20formation&rft.jtitle=Protoplasma&rft.au=Felhofer,%20Martin&rft.date=2021-11-01&rft.volume=258&rft.issue=6&rft.spage=1323&rft.epage=1334&rft.pages=1323-1334&rft.issn=0033-183X&rft.eissn=1615-6102&rft_id=info:doi/10.1007/s00709-021-01685-3&rft_dat=%3Cproquest_pubme%3E2582892164%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-126b99397ca940b0108aa3f5e67007b0892e69919abc6dabc81c7c6446ecf7bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582892164&rft_id=info:pmid/34292402&rfr_iscdi=true |