Loading…

Flow radiocytometry using droplet optofluidics

Flow-based cytometry methods are widely used to analyze heterogeneous cell populations. However, their use for small molecule studies remains limited due to bulky fluorescent labels that often interfere with biochemical activity in cells. In contrast, radiotracers require minimal modification of the...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2021-12, Vol.194, p.113565-113565, Article 113565
Main Authors: Ha, Byunghang, Kim, Tae Jin, Moon, Ejung, Giaccia, Amato J., Pratx, Guillem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-6b64facdaf90ab0d15a6db3cdcfd993a0c4283aa7c9097eeeeefb38306a108c13
cites cdi_FETCH-LOGICAL-c455t-6b64facdaf90ab0d15a6db3cdcfd993a0c4283aa7c9097eeeeefb38306a108c13
container_end_page 113565
container_issue
container_start_page 113565
container_title Biosensors & bioelectronics
container_volume 194
creator Ha, Byunghang
Kim, Tae Jin
Moon, Ejung
Giaccia, Amato J.
Pratx, Guillem
description Flow-based cytometry methods are widely used to analyze heterogeneous cell populations. However, their use for small molecule studies remains limited due to bulky fluorescent labels that often interfere with biochemical activity in cells. In contrast, radiotracers require minimal modification of their target molecules and can track biochemical processes with negligible interference and high specificity. Here, we introduce flow radiocytometry (FRCM) that broadens the scope of current cytometry methods to include beta-emitting radiotracers as probes for single cell studies. FRCM uses droplet microfluidics and radiofluorogenesis to translate the radioactivity of single cells into a fluorescent signal that is then read out using a high-throughput optofluidic device. As a proof of concept, we quantitated [18F]fluorodeoxyglucose radiotracer uptake in single human breast cancer cells and successfully assessed the metabolic flux of glucose and its heterogeneity at the cellular level. We believe FRCM has potential applications ranging from analytical assays for cancer and other diseases to development of small-molecule drugs. •We developed flow radiocytometry to measure radiotracer uptake in single cells with high throughput.•An optimized radiofluorogenesis process converts radioactivity into fluorescence with minimal crosstalk between drops.•Using the method, we assessed the metabolic flux of glucose and its heterogeneity in different cell samples.
doi_str_mv 10.1016/j.bios.2021.113565
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8530933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566321006023</els_id><sourcerecordid>2570371168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-6b64facdaf90ab0d15a6db3cdcfd993a0c4283aa7c9097eeeeefb38306a108c13</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4Mobk6_gAfZ0UvrS9OkDYggw6kw8KLnkCbpzGibmbSTfXtbqkMvvss7vN_7v8cPoUsMMQbMbjZxYV2IE0hwjDGhjB6hKc4zEqUJocdoCpyyiDJGJugshA0AZJjDKZqQNOUJBZiieFm5z7mX2jq1b11tWr-fd8E267n2bluZdu62rSurzmqrwjk6KWUVzMV3n6G35cPr4ilavTw-L-5XkUopbSNWsLSUSsuSgyxAYyqZLojSqtScEwkqTXIiZaY48MwMVRYkJ8AkhlxhMkN3Y-62K2qjlWlaLyux9baWfi-ctOLvpLHvYu12IqcEOCF9wPV3gHcfnQmtqG1QpqpkY1wXREIzIBnGLO_RZESVdyF4Ux7OYBCDaLERg2gxiBaj6H7p6veDh5Ufsz1wOwKm17SzxougrGmU0dYb1Qrt7H_5X2QNkVY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570371168</pqid></control><display><type>article</type><title>Flow radiocytometry using droplet optofluidics</title><source>ScienceDirect Freedom Collection</source><creator>Ha, Byunghang ; Kim, Tae Jin ; Moon, Ejung ; Giaccia, Amato J. ; Pratx, Guillem</creator><creatorcontrib>Ha, Byunghang ; Kim, Tae Jin ; Moon, Ejung ; Giaccia, Amato J. ; Pratx, Guillem</creatorcontrib><description>Flow-based cytometry methods are widely used to analyze heterogeneous cell populations. However, their use for small molecule studies remains limited due to bulky fluorescent labels that often interfere with biochemical activity in cells. In contrast, radiotracers require minimal modification of their target molecules and can track biochemical processes with negligible interference and high specificity. Here, we introduce flow radiocytometry (FRCM) that broadens the scope of current cytometry methods to include beta-emitting radiotracers as probes for single cell studies. FRCM uses droplet microfluidics and radiofluorogenesis to translate the radioactivity of single cells into a fluorescent signal that is then read out using a high-throughput optofluidic device. As a proof of concept, we quantitated [18F]fluorodeoxyglucose radiotracer uptake in single human breast cancer cells and successfully assessed the metabolic flux of glucose and its heterogeneity at the cellular level. We believe FRCM has potential applications ranging from analytical assays for cancer and other diseases to development of small-molecule drugs. •We developed flow radiocytometry to measure radiotracer uptake in single cells with high throughput.•An optimized radiofluorogenesis process converts radioactivity into fluorescence with minimal crosstalk between drops.•Using the method, we assessed the metabolic flux of glucose and its heterogeneity in different cell samples.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2021.113565</identifier><identifier>PMID: 34492500</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Biological Assay ; Biosensing Techniques ; Droplet microfluidics ; Flow Cytometry ; Fluorodeoxyglucose ; Humans ; Microfluidics ; Optofluidics ; Physical Phenomena ; Radiochemistry ; Radiofluorogenesis ; Single-cell analysis</subject><ispartof>Biosensors &amp; bioelectronics, 2021-12, Vol.194, p.113565-113565, Article 113565</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright © 2021 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-6b64facdaf90ab0d15a6db3cdcfd993a0c4283aa7c9097eeeeefb38306a108c13</citedby><cites>FETCH-LOGICAL-c455t-6b64facdaf90ab0d15a6db3cdcfd993a0c4283aa7c9097eeeeefb38306a108c13</cites><orcidid>0000-0002-0247-6470 ; 0000-0002-4491-4627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34492500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ha, Byunghang</creatorcontrib><creatorcontrib>Kim, Tae Jin</creatorcontrib><creatorcontrib>Moon, Ejung</creatorcontrib><creatorcontrib>Giaccia, Amato J.</creatorcontrib><creatorcontrib>Pratx, Guillem</creatorcontrib><title>Flow radiocytometry using droplet optofluidics</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Flow-based cytometry methods are widely used to analyze heterogeneous cell populations. However, their use for small molecule studies remains limited due to bulky fluorescent labels that often interfere with biochemical activity in cells. In contrast, radiotracers require minimal modification of their target molecules and can track biochemical processes with negligible interference and high specificity. Here, we introduce flow radiocytometry (FRCM) that broadens the scope of current cytometry methods to include beta-emitting radiotracers as probes for single cell studies. FRCM uses droplet microfluidics and radiofluorogenesis to translate the radioactivity of single cells into a fluorescent signal that is then read out using a high-throughput optofluidic device. As a proof of concept, we quantitated [18F]fluorodeoxyglucose radiotracer uptake in single human breast cancer cells and successfully assessed the metabolic flux of glucose and its heterogeneity at the cellular level. We believe FRCM has potential applications ranging from analytical assays for cancer and other diseases to development of small-molecule drugs. •We developed flow radiocytometry to measure radiotracer uptake in single cells with high throughput.•An optimized radiofluorogenesis process converts radioactivity into fluorescence with minimal crosstalk between drops.•Using the method, we assessed the metabolic flux of glucose and its heterogeneity in different cell samples.</description><subject>Biological Assay</subject><subject>Biosensing Techniques</subject><subject>Droplet microfluidics</subject><subject>Flow Cytometry</subject><subject>Fluorodeoxyglucose</subject><subject>Humans</subject><subject>Microfluidics</subject><subject>Optofluidics</subject><subject>Physical Phenomena</subject><subject>Radiochemistry</subject><subject>Radiofluorogenesis</subject><subject>Single-cell analysis</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4Mobk6_gAfZ0UvrS9OkDYggw6kw8KLnkCbpzGibmbSTfXtbqkMvvss7vN_7v8cPoUsMMQbMbjZxYV2IE0hwjDGhjB6hKc4zEqUJocdoCpyyiDJGJugshA0AZJjDKZqQNOUJBZiieFm5z7mX2jq1b11tWr-fd8E267n2bluZdu62rSurzmqrwjk6KWUVzMV3n6G35cPr4ilavTw-L-5XkUopbSNWsLSUSsuSgyxAYyqZLojSqtScEwkqTXIiZaY48MwMVRYkJ8AkhlxhMkN3Y-62K2qjlWlaLyux9baWfi-ctOLvpLHvYu12IqcEOCF9wPV3gHcfnQmtqG1QpqpkY1wXREIzIBnGLO_RZESVdyF4Ux7OYBCDaLERg2gxiBaj6H7p6veDh5Ufsz1wOwKm17SzxougrGmU0dYb1Qrt7H_5X2QNkVY</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Ha, Byunghang</creator><creator>Kim, Tae Jin</creator><creator>Moon, Ejung</creator><creator>Giaccia, Amato J.</creator><creator>Pratx, Guillem</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0247-6470</orcidid><orcidid>https://orcid.org/0000-0002-4491-4627</orcidid></search><sort><creationdate>20211215</creationdate><title>Flow radiocytometry using droplet optofluidics</title><author>Ha, Byunghang ; Kim, Tae Jin ; Moon, Ejung ; Giaccia, Amato J. ; Pratx, Guillem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-6b64facdaf90ab0d15a6db3cdcfd993a0c4283aa7c9097eeeeefb38306a108c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological Assay</topic><topic>Biosensing Techniques</topic><topic>Droplet microfluidics</topic><topic>Flow Cytometry</topic><topic>Fluorodeoxyglucose</topic><topic>Humans</topic><topic>Microfluidics</topic><topic>Optofluidics</topic><topic>Physical Phenomena</topic><topic>Radiochemistry</topic><topic>Radiofluorogenesis</topic><topic>Single-cell analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Byunghang</creatorcontrib><creatorcontrib>Kim, Tae Jin</creatorcontrib><creatorcontrib>Moon, Ejung</creatorcontrib><creatorcontrib>Giaccia, Amato J.</creatorcontrib><creatorcontrib>Pratx, Guillem</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Byunghang</au><au>Kim, Tae Jin</au><au>Moon, Ejung</au><au>Giaccia, Amato J.</au><au>Pratx, Guillem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow radiocytometry using droplet optofluidics</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2021-12-15</date><risdate>2021</risdate><volume>194</volume><spage>113565</spage><epage>113565</epage><pages>113565-113565</pages><artnum>113565</artnum><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Flow-based cytometry methods are widely used to analyze heterogeneous cell populations. However, their use for small molecule studies remains limited due to bulky fluorescent labels that often interfere with biochemical activity in cells. In contrast, radiotracers require minimal modification of their target molecules and can track biochemical processes with negligible interference and high specificity. Here, we introduce flow radiocytometry (FRCM) that broadens the scope of current cytometry methods to include beta-emitting radiotracers as probes for single cell studies. FRCM uses droplet microfluidics and radiofluorogenesis to translate the radioactivity of single cells into a fluorescent signal that is then read out using a high-throughput optofluidic device. As a proof of concept, we quantitated [18F]fluorodeoxyglucose radiotracer uptake in single human breast cancer cells and successfully assessed the metabolic flux of glucose and its heterogeneity at the cellular level. We believe FRCM has potential applications ranging from analytical assays for cancer and other diseases to development of small-molecule drugs. •We developed flow radiocytometry to measure radiotracer uptake in single cells with high throughput.•An optimized radiofluorogenesis process converts radioactivity into fluorescence with minimal crosstalk between drops.•Using the method, we assessed the metabolic flux of glucose and its heterogeneity in different cell samples.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>34492500</pmid><doi>10.1016/j.bios.2021.113565</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0247-6470</orcidid><orcidid>https://orcid.org/0000-0002-4491-4627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2021-12, Vol.194, p.113565-113565, Article 113565
issn 0956-5663
1873-4235
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8530933
source ScienceDirect Freedom Collection
subjects Biological Assay
Biosensing Techniques
Droplet microfluidics
Flow Cytometry
Fluorodeoxyglucose
Humans
Microfluidics
Optofluidics
Physical Phenomena
Radiochemistry
Radiofluorogenesis
Single-cell analysis
title Flow radiocytometry using droplet optofluidics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20radiocytometry%20using%20droplet%20optofluidics&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Ha,%20Byunghang&rft.date=2021-12-15&rft.volume=194&rft.spage=113565&rft.epage=113565&rft.pages=113565-113565&rft.artnum=113565&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2021.113565&rft_dat=%3Cproquest_pubme%3E2570371168%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-6b64facdaf90ab0d15a6db3cdcfd993a0c4283aa7c9097eeeeefb38306a108c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570371168&rft_id=info:pmid/34492500&rfr_iscdi=true