Loading…
Collective behaviours in organoids
Collective behaviour emerges from interacting units within communities, such as migrating herds, swimming fish schools, and cells within tissues. At the microscopic level, collective behaviours include collective cell migration in development and cancer invasion, rhythmic gene expression in pattern...
Saved in:
Published in: | Current opinion in cell biology 2021-10, Vol.72, p.81-90 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Collective behaviour emerges from interacting units within communities, such as migrating herds, swimming fish schools, and cells within tissues. At the microscopic level, collective behaviours include collective cell migration in development and cancer invasion, rhythmic gene expression in pattern formation, cell competition in homeostasis and cancer, force generation and mechano-sensing in morphogenesis. Studying the initiation and the maintenance of collective cell behaviours is key to understand the principles of development, regeneration and disease. However, the manifold influences of contributing factors in in vivo environments challenge the dissection of causalities in animal models. As an alternative model that has emerged to overcome this difficulty, in vitro three-dimensional organoid cultures provide a reductionist approach yet retain similarities with the in vivo tissue in cellular composition and tissue organisation. Here, we focus on recent progresses in studying collective behaviours in different organoid systems and discuss their advantages and the possibility of improvement for future applications. |
---|---|
ISSN: | 0955-0674 1879-0410 |
DOI: | 10.1016/j.ceb.2021.06.006 |