Loading…
Impact Ionization Induced by Terahertz Radiation in HgTe Quantum Wells of Critical Thickness
We report on the observation of terahertz (THz) radiation induced band-to-band impact ionization in HgTe quantum well (QW) structures of critical thickness, which are characterized by a nearly linear energy dispersion. The THz electric field drives the carriers initializing electron-hole pair genera...
Saved in:
Published in: | Journal of infrared, millimeter and terahertz waves millimeter and terahertz waves, 2020-10, Vol.41 (10), p.1155-1169 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-48fb45e2b83ff20f6612364c5d4b195225a05ff5dba5bf88acfa3c40bbec4c5f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-48fb45e2b83ff20f6612364c5d4b195225a05ff5dba5bf88acfa3c40bbec4c5f3 |
container_end_page | 1169 |
container_issue | 10 |
container_start_page | 1155 |
container_title | Journal of infrared, millimeter and terahertz waves |
container_volume | 41 |
creator | Hubmann, S. Budkin, G.V. Urban, M. Bel’kov, V.V. Dmitriev, A.P. Ziegler, J. Kozlov, D.A. Mikhailov, N.N. Dvoretsky, S.A. Kvon, Z.D. Weiss, D. Ganichev, S.D. |
description | We report on the observation of terahertz (THz) radiation induced band-to-band impact ionization in HgTe quantum well (QW) structures of critical thickness, which are characterized by a nearly linear energy dispersion. The THz electric field drives the carriers initializing electron-hole pair generation. The carrier multiplication is observed for photon energies less than the energy gap under the condition that the product of the radiation angular frequency
ω
and momentum relaxation time
τ
l
larger than unity. In this case, the charge carriers acquire high energies solely because of collisions in the presence of a high-frequency electric field. The developed microscopic theory shows that the probability of the light-induced impact ionization is proportional to
exp
(
−
E
0
2
/
E
2
)
, with the radiation electric field amplitude
E
and the characteristic field parameter
E
0
. As observed in experiment, it exhibits a strong frequency dependence for
ω
τ
≫ 1 characterized by the characteristic field
E
0
linearly increasing with the radiation frequency
ω
. |
doi_str_mv | 10.1007/s10762-020-00690-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581636418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-48fb45e2b83ff20f6612364c5d4b195225a05ff5dba5bf88acfa3c40bbec4c5f3</originalsourceid><addsrcrecordid>eNp9kU1rHSEYhaW0NB_tH-iiCN1kM4k66jibQLnk40IgNNzSTUHU0XtNZ_RWZwLJr4_t5KtdZKXyPu_xHA4AnzA6xAg1RxmjhpMKEVQhxFtU8TdgFwvOq_Lgbx_voiU7YC_n6wJR2vL3YKemDcENorvg53LYKjPCZQz-To0-BrgM3WRsB_UtXNmkNjaNd_BKdX4e-wDP1ysLv00qjNMAf9i-zzA6uEh-9Eb1cLXx5lewOX8A75zqs_34cO6D76cnq8V5dXF5tlx8vagMbehYUeE0ZZZoUTtHkOMck5pTwzqqccsIYQox51inFdNOCGWcqg1FWltTKFfvg-NZdzvpwXbGhjGpXm6TH1S6lVF5-e8k-I1cxxspGEONqIvAwYNAir8nm0c5-GxKMBVsnLIkrC2WMCa4oF_-Q6_jlEKJVyiBeTGORaHITJkUc07WPZnBSP4pT87lyVKe_Fue5GXp88sYTyuPbRWgnoFcRmFt0_Pfr8jeA2rQpjk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581636418</pqid></control><display><type>article</type><title>Impact Ionization Induced by Terahertz Radiation in HgTe Quantum Wells of Critical Thickness</title><source>Springer Nature</source><creator>Hubmann, S. ; Budkin, G.V. ; Urban, M. ; Bel’kov, V.V. ; Dmitriev, A.P. ; Ziegler, J. ; Kozlov, D.A. ; Mikhailov, N.N. ; Dvoretsky, S.A. ; Kvon, Z.D. ; Weiss, D. ; Ganichev, S.D.</creator><creatorcontrib>Hubmann, S. ; Budkin, G.V. ; Urban, M. ; Bel’kov, V.V. ; Dmitriev, A.P. ; Ziegler, J. ; Kozlov, D.A. ; Mikhailov, N.N. ; Dvoretsky, S.A. ; Kvon, Z.D. ; Weiss, D. ; Ganichev, S.D.</creatorcontrib><description>We report on the observation of terahertz (THz) radiation induced band-to-band impact ionization in HgTe quantum well (QW) structures of critical thickness, which are characterized by a nearly linear energy dispersion. The THz electric field drives the carriers initializing electron-hole pair generation. The carrier multiplication is observed for photon energies less than the energy gap under the condition that the product of the radiation angular frequency
ω
and momentum relaxation time
τ
l
larger than unity. In this case, the charge carriers acquire high energies solely because of collisions in the presence of a high-frequency electric field. The developed microscopic theory shows that the probability of the light-induced impact ionization is proportional to
exp
(
−
E
0
2
/
E
2
)
, with the radiation electric field amplitude
E
and the characteristic field parameter
E
0
. As observed in experiment, it exhibits a strong frequency dependence for
ω
τ
≫ 1 characterized by the characteristic field
E
0
linearly increasing with the radiation frequency
ω
.</description><identifier>ISSN: 1866-6892</identifier><identifier>EISSN: 1866-6906</identifier><identifier>DOI: 10.1007/s10762-020-00690-6</identifier><identifier>PMID: 34721704</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Angular momentum ; Classical Electrodynamics ; Current carriers ; Electric fields ; Electrical Engineering ; Electronics and Microelectronics ; Energy gap ; Engineering ; Holes (electron deficiencies) ; Instrumentation ; Ionization ; Multiplication ; Quantum wells ; Radiation ; Radiation effects ; Relaxation time ; Terahertz frequencies ; Thickness</subject><ispartof>Journal of infrared, millimeter and terahertz waves, 2020-10, Vol.41 (10), p.1155-1169</ispartof><rights>The Author(s) 2020. corrected publication October/2021</rights><rights>The Author(s) 2020, corrected publication October/2021.</rights><rights>The Author(s) 2020. corrected publication October/2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020, corrected publication October/2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-48fb45e2b83ff20f6612364c5d4b195225a05ff5dba5bf88acfa3c40bbec4c5f3</citedby><cites>FETCH-LOGICAL-c474t-48fb45e2b83ff20f6612364c5d4b195225a05ff5dba5bf88acfa3c40bbec4c5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34721704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hubmann, S.</creatorcontrib><creatorcontrib>Budkin, G.V.</creatorcontrib><creatorcontrib>Urban, M.</creatorcontrib><creatorcontrib>Bel’kov, V.V.</creatorcontrib><creatorcontrib>Dmitriev, A.P.</creatorcontrib><creatorcontrib>Ziegler, J.</creatorcontrib><creatorcontrib>Kozlov, D.A.</creatorcontrib><creatorcontrib>Mikhailov, N.N.</creatorcontrib><creatorcontrib>Dvoretsky, S.A.</creatorcontrib><creatorcontrib>Kvon, Z.D.</creatorcontrib><creatorcontrib>Weiss, D.</creatorcontrib><creatorcontrib>Ganichev, S.D.</creatorcontrib><title>Impact Ionization Induced by Terahertz Radiation in HgTe Quantum Wells of Critical Thickness</title><title>Journal of infrared, millimeter and terahertz waves</title><addtitle>J Infrared Milli Terahz Waves</addtitle><addtitle>J Infrared Millim Terahertz Waves</addtitle><description>We report on the observation of terahertz (THz) radiation induced band-to-band impact ionization in HgTe quantum well (QW) structures of critical thickness, which are characterized by a nearly linear energy dispersion. The THz electric field drives the carriers initializing electron-hole pair generation. The carrier multiplication is observed for photon energies less than the energy gap under the condition that the product of the radiation angular frequency
ω
and momentum relaxation time
τ
l
larger than unity. In this case, the charge carriers acquire high energies solely because of collisions in the presence of a high-frequency electric field. The developed microscopic theory shows that the probability of the light-induced impact ionization is proportional to
exp
(
−
E
0
2
/
E
2
)
, with the radiation electric field amplitude
E
and the characteristic field parameter
E
0
. As observed in experiment, it exhibits a strong frequency dependence for
ω
τ
≫ 1 characterized by the characteristic field
E
0
linearly increasing with the radiation frequency
ω
.</description><subject>Angular momentum</subject><subject>Classical Electrodynamics</subject><subject>Current carriers</subject><subject>Electric fields</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Energy gap</subject><subject>Engineering</subject><subject>Holes (electron deficiencies)</subject><subject>Instrumentation</subject><subject>Ionization</subject><subject>Multiplication</subject><subject>Quantum wells</subject><subject>Radiation</subject><subject>Radiation effects</subject><subject>Relaxation time</subject><subject>Terahertz frequencies</subject><subject>Thickness</subject><issn>1866-6892</issn><issn>1866-6906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rHSEYhaW0NB_tH-iiCN1kM4k66jibQLnk40IgNNzSTUHU0XtNZ_RWZwLJr4_t5KtdZKXyPu_xHA4AnzA6xAg1RxmjhpMKEVQhxFtU8TdgFwvOq_Lgbx_voiU7YC_n6wJR2vL3YKemDcENorvg53LYKjPCZQz-To0-BrgM3WRsB_UtXNmkNjaNd_BKdX4e-wDP1ysLv00qjNMAf9i-zzA6uEh-9Eb1cLXx5lewOX8A75zqs_34cO6D76cnq8V5dXF5tlx8vagMbehYUeE0ZZZoUTtHkOMck5pTwzqqccsIYQox51inFdNOCGWcqg1FWltTKFfvg-NZdzvpwXbGhjGpXm6TH1S6lVF5-e8k-I1cxxspGEONqIvAwYNAir8nm0c5-GxKMBVsnLIkrC2WMCa4oF_-Q6_jlEKJVyiBeTGORaHITJkUc07WPZnBSP4pT87lyVKe_Fue5GXp88sYTyuPbRWgnoFcRmFt0_Pfr8jeA2rQpjk</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Hubmann, S.</creator><creator>Budkin, G.V.</creator><creator>Urban, M.</creator><creator>Bel’kov, V.V.</creator><creator>Dmitriev, A.P.</creator><creator>Ziegler, J.</creator><creator>Kozlov, D.A.</creator><creator>Mikhailov, N.N.</creator><creator>Dvoretsky, S.A.</creator><creator>Kvon, Z.D.</creator><creator>Weiss, D.</creator><creator>Ganichev, S.D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201001</creationdate><title>Impact Ionization Induced by Terahertz Radiation in HgTe Quantum Wells of Critical Thickness</title><author>Hubmann, S. ; Budkin, G.V. ; Urban, M. ; Bel’kov, V.V. ; Dmitriev, A.P. ; Ziegler, J. ; Kozlov, D.A. ; Mikhailov, N.N. ; Dvoretsky, S.A. ; Kvon, Z.D. ; Weiss, D. ; Ganichev, S.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-48fb45e2b83ff20f6612364c5d4b195225a05ff5dba5bf88acfa3c40bbec4c5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angular momentum</topic><topic>Classical Electrodynamics</topic><topic>Current carriers</topic><topic>Electric fields</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Energy gap</topic><topic>Engineering</topic><topic>Holes (electron deficiencies)</topic><topic>Instrumentation</topic><topic>Ionization</topic><topic>Multiplication</topic><topic>Quantum wells</topic><topic>Radiation</topic><topic>Radiation effects</topic><topic>Relaxation time</topic><topic>Terahertz frequencies</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hubmann, S.</creatorcontrib><creatorcontrib>Budkin, G.V.</creatorcontrib><creatorcontrib>Urban, M.</creatorcontrib><creatorcontrib>Bel’kov, V.V.</creatorcontrib><creatorcontrib>Dmitriev, A.P.</creatorcontrib><creatorcontrib>Ziegler, J.</creatorcontrib><creatorcontrib>Kozlov, D.A.</creatorcontrib><creatorcontrib>Mikhailov, N.N.</creatorcontrib><creatorcontrib>Dvoretsky, S.A.</creatorcontrib><creatorcontrib>Kvon, Z.D.</creatorcontrib><creatorcontrib>Weiss, D.</creatorcontrib><creatorcontrib>Ganichev, S.D.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of infrared, millimeter and terahertz waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hubmann, S.</au><au>Budkin, G.V.</au><au>Urban, M.</au><au>Bel’kov, V.V.</au><au>Dmitriev, A.P.</au><au>Ziegler, J.</au><au>Kozlov, D.A.</au><au>Mikhailov, N.N.</au><au>Dvoretsky, S.A.</au><au>Kvon, Z.D.</au><au>Weiss, D.</au><au>Ganichev, S.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact Ionization Induced by Terahertz Radiation in HgTe Quantum Wells of Critical Thickness</atitle><jtitle>Journal of infrared, millimeter and terahertz waves</jtitle><stitle>J Infrared Milli Terahz Waves</stitle><addtitle>J Infrared Millim Terahertz Waves</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>41</volume><issue>10</issue><spage>1155</spage><epage>1169</epage><pages>1155-1169</pages><issn>1866-6892</issn><eissn>1866-6906</eissn><abstract>We report on the observation of terahertz (THz) radiation induced band-to-band impact ionization in HgTe quantum well (QW) structures of critical thickness, which are characterized by a nearly linear energy dispersion. The THz electric field drives the carriers initializing electron-hole pair generation. The carrier multiplication is observed for photon energies less than the energy gap under the condition that the product of the radiation angular frequency
ω
and momentum relaxation time
τ
l
larger than unity. In this case, the charge carriers acquire high energies solely because of collisions in the presence of a high-frequency electric field. The developed microscopic theory shows that the probability of the light-induced impact ionization is proportional to
exp
(
−
E
0
2
/
E
2
)
, with the radiation electric field amplitude
E
and the characteristic field parameter
E
0
. As observed in experiment, it exhibits a strong frequency dependence for
ω
τ
≫ 1 characterized by the characteristic field
E
0
linearly increasing with the radiation frequency
ω
.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34721704</pmid><doi>10.1007/s10762-020-00690-6</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-6892 |
ispartof | Journal of infrared, millimeter and terahertz waves, 2020-10, Vol.41 (10), p.1155-1169 |
issn | 1866-6892 1866-6906 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550783 |
source | Springer Nature |
subjects | Angular momentum Classical Electrodynamics Current carriers Electric fields Electrical Engineering Electronics and Microelectronics Energy gap Engineering Holes (electron deficiencies) Instrumentation Ionization Multiplication Quantum wells Radiation Radiation effects Relaxation time Terahertz frequencies Thickness |
title | Impact Ionization Induced by Terahertz Radiation in HgTe Quantum Wells of Critical Thickness |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20Ionization%20Induced%20by%20Terahertz%20Radiation%20in%20HgTe%20Quantum%20Wells%20of%20Critical%20Thickness&rft.jtitle=Journal%20of%20infrared,%20millimeter%20and%20terahertz%20waves&rft.au=Hubmann,%20S.&rft.date=2020-10-01&rft.volume=41&rft.issue=10&rft.spage=1155&rft.epage=1169&rft.pages=1155-1169&rft.issn=1866-6892&rft.eissn=1866-6906&rft_id=info:doi/10.1007/s10762-020-00690-6&rft_dat=%3Cproquest_pubme%3E2581636418%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-48fb45e2b83ff20f6612364c5d4b195225a05ff5dba5bf88acfa3c40bbec4c5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2581636418&rft_id=info:pmid/34721704&rfr_iscdi=true |