Loading…

Impact Ionization Induced by Terahertz Radiation in HgTe Quantum Wells of Critical Thickness

We report on the observation of terahertz (THz) radiation induced band-to-band impact ionization in HgTe quantum well (QW) structures of critical thickness, which are characterized by a nearly linear energy dispersion. The THz electric field drives the carriers initializing electron-hole pair genera...

Full description

Saved in:
Bibliographic Details
Published in:Journal of infrared, millimeter and terahertz waves millimeter and terahertz waves, 2020-10, Vol.41 (10), p.1155-1169
Main Authors: Hubmann, S., Budkin, G.V., Urban, M., Bel’kov, V.V., Dmitriev, A.P., Ziegler, J., Kozlov, D.A., Mikhailov, N.N., Dvoretsky, S.A., Kvon, Z.D., Weiss, D., Ganichev, S.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-48fb45e2b83ff20f6612364c5d4b195225a05ff5dba5bf88acfa3c40bbec4c5f3
cites cdi_FETCH-LOGICAL-c474t-48fb45e2b83ff20f6612364c5d4b195225a05ff5dba5bf88acfa3c40bbec4c5f3
container_end_page 1169
container_issue 10
container_start_page 1155
container_title Journal of infrared, millimeter and terahertz waves
container_volume 41
creator Hubmann, S.
Budkin, G.V.
Urban, M.
Bel’kov, V.V.
Dmitriev, A.P.
Ziegler, J.
Kozlov, D.A.
Mikhailov, N.N.
Dvoretsky, S.A.
Kvon, Z.D.
Weiss, D.
Ganichev, S.D.
description We report on the observation of terahertz (THz) radiation induced band-to-band impact ionization in HgTe quantum well (QW) structures of critical thickness, which are characterized by a nearly linear energy dispersion. The THz electric field drives the carriers initializing electron-hole pair generation. The carrier multiplication is observed for photon energies less than the energy gap under the condition that the product of the radiation angular frequency ω and momentum relaxation time τ l larger than unity. In this case, the charge carriers acquire high energies solely because of collisions in the presence of a high-frequency electric field. The developed microscopic theory shows that the probability of the light-induced impact ionization is proportional to exp ( − E 0 2 / E 2 ) , with the radiation electric field amplitude E and the characteristic field parameter E 0 . As observed in experiment, it exhibits a strong frequency dependence for ω τ ≫ 1 characterized by the characteristic field E 0 linearly increasing with the radiation frequency ω .
doi_str_mv 10.1007/s10762-020-00690-6
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581636418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-48fb45e2b83ff20f6612364c5d4b195225a05ff5dba5bf88acfa3c40bbec4c5f3</originalsourceid><addsrcrecordid>eNp9kU1rHSEYhaW0NB_tH-iiCN1kM4k66jibQLnk40IgNNzSTUHU0XtNZ_RWZwLJr4_t5KtdZKXyPu_xHA4AnzA6xAg1RxmjhpMKEVQhxFtU8TdgFwvOq_Lgbx_voiU7YC_n6wJR2vL3YKemDcENorvg53LYKjPCZQz-To0-BrgM3WRsB_UtXNmkNjaNd_BKdX4e-wDP1ysLv00qjNMAf9i-zzA6uEh-9Eb1cLXx5lewOX8A75zqs_34cO6D76cnq8V5dXF5tlx8vagMbehYUeE0ZZZoUTtHkOMck5pTwzqqccsIYQox51inFdNOCGWcqg1FWltTKFfvg-NZdzvpwXbGhjGpXm6TH1S6lVF5-e8k-I1cxxspGEONqIvAwYNAir8nm0c5-GxKMBVsnLIkrC2WMCa4oF_-Q6_jlEKJVyiBeTGORaHITJkUc07WPZnBSP4pT87lyVKe_Fue5GXp88sYTyuPbRWgnoFcRmFt0_Pfr8jeA2rQpjk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581636418</pqid></control><display><type>article</type><title>Impact Ionization Induced by Terahertz Radiation in HgTe Quantum Wells of Critical Thickness</title><source>Springer Nature</source><creator>Hubmann, S. ; Budkin, G.V. ; Urban, M. ; Bel’kov, V.V. ; Dmitriev, A.P. ; Ziegler, J. ; Kozlov, D.A. ; Mikhailov, N.N. ; Dvoretsky, S.A. ; Kvon, Z.D. ; Weiss, D. ; Ganichev, S.D.</creator><creatorcontrib>Hubmann, S. ; Budkin, G.V. ; Urban, M. ; Bel’kov, V.V. ; Dmitriev, A.P. ; Ziegler, J. ; Kozlov, D.A. ; Mikhailov, N.N. ; Dvoretsky, S.A. ; Kvon, Z.D. ; Weiss, D. ; Ganichev, S.D.</creatorcontrib><description>We report on the observation of terahertz (THz) radiation induced band-to-band impact ionization in HgTe quantum well (QW) structures of critical thickness, which are characterized by a nearly linear energy dispersion. The THz electric field drives the carriers initializing electron-hole pair generation. The carrier multiplication is observed for photon energies less than the energy gap under the condition that the product of the radiation angular frequency ω and momentum relaxation time τ l larger than unity. In this case, the charge carriers acquire high energies solely because of collisions in the presence of a high-frequency electric field. The developed microscopic theory shows that the probability of the light-induced impact ionization is proportional to exp ( − E 0 2 / E 2 ) , with the radiation electric field amplitude E and the characteristic field parameter E 0 . As observed in experiment, it exhibits a strong frequency dependence for ω τ ≫ 1 characterized by the characteristic field E 0 linearly increasing with the radiation frequency ω .</description><identifier>ISSN: 1866-6892</identifier><identifier>EISSN: 1866-6906</identifier><identifier>DOI: 10.1007/s10762-020-00690-6</identifier><identifier>PMID: 34721704</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Angular momentum ; Classical Electrodynamics ; Current carriers ; Electric fields ; Electrical Engineering ; Electronics and Microelectronics ; Energy gap ; Engineering ; Holes (electron deficiencies) ; Instrumentation ; Ionization ; Multiplication ; Quantum wells ; Radiation ; Radiation effects ; Relaxation time ; Terahertz frequencies ; Thickness</subject><ispartof>Journal of infrared, millimeter and terahertz waves, 2020-10, Vol.41 (10), p.1155-1169</ispartof><rights>The Author(s) 2020. corrected publication October/2021</rights><rights>The Author(s) 2020, corrected publication October/2021.</rights><rights>The Author(s) 2020. corrected publication October/2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020, corrected publication October/2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-48fb45e2b83ff20f6612364c5d4b195225a05ff5dba5bf88acfa3c40bbec4c5f3</citedby><cites>FETCH-LOGICAL-c474t-48fb45e2b83ff20f6612364c5d4b195225a05ff5dba5bf88acfa3c40bbec4c5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34721704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hubmann, S.</creatorcontrib><creatorcontrib>Budkin, G.V.</creatorcontrib><creatorcontrib>Urban, M.</creatorcontrib><creatorcontrib>Bel’kov, V.V.</creatorcontrib><creatorcontrib>Dmitriev, A.P.</creatorcontrib><creatorcontrib>Ziegler, J.</creatorcontrib><creatorcontrib>Kozlov, D.A.</creatorcontrib><creatorcontrib>Mikhailov, N.N.</creatorcontrib><creatorcontrib>Dvoretsky, S.A.</creatorcontrib><creatorcontrib>Kvon, Z.D.</creatorcontrib><creatorcontrib>Weiss, D.</creatorcontrib><creatorcontrib>Ganichev, S.D.</creatorcontrib><title>Impact Ionization Induced by Terahertz Radiation in HgTe Quantum Wells of Critical Thickness</title><title>Journal of infrared, millimeter and terahertz waves</title><addtitle>J Infrared Milli Terahz Waves</addtitle><addtitle>J Infrared Millim Terahertz Waves</addtitle><description>We report on the observation of terahertz (THz) radiation induced band-to-band impact ionization in HgTe quantum well (QW) structures of critical thickness, which are characterized by a nearly linear energy dispersion. The THz electric field drives the carriers initializing electron-hole pair generation. The carrier multiplication is observed for photon energies less than the energy gap under the condition that the product of the radiation angular frequency ω and momentum relaxation time τ l larger than unity. In this case, the charge carriers acquire high energies solely because of collisions in the presence of a high-frequency electric field. The developed microscopic theory shows that the probability of the light-induced impact ionization is proportional to exp ( − E 0 2 / E 2 ) , with the radiation electric field amplitude E and the characteristic field parameter E 0 . As observed in experiment, it exhibits a strong frequency dependence for ω τ ≫ 1 characterized by the characteristic field E 0 linearly increasing with the radiation frequency ω .</description><subject>Angular momentum</subject><subject>Classical Electrodynamics</subject><subject>Current carriers</subject><subject>Electric fields</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Energy gap</subject><subject>Engineering</subject><subject>Holes (electron deficiencies)</subject><subject>Instrumentation</subject><subject>Ionization</subject><subject>Multiplication</subject><subject>Quantum wells</subject><subject>Radiation</subject><subject>Radiation effects</subject><subject>Relaxation time</subject><subject>Terahertz frequencies</subject><subject>Thickness</subject><issn>1866-6892</issn><issn>1866-6906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rHSEYhaW0NB_tH-iiCN1kM4k66jibQLnk40IgNNzSTUHU0XtNZ_RWZwLJr4_t5KtdZKXyPu_xHA4AnzA6xAg1RxmjhpMKEVQhxFtU8TdgFwvOq_Lgbx_voiU7YC_n6wJR2vL3YKemDcENorvg53LYKjPCZQz-To0-BrgM3WRsB_UtXNmkNjaNd_BKdX4e-wDP1ysLv00qjNMAf9i-zzA6uEh-9Eb1cLXx5lewOX8A75zqs_34cO6D76cnq8V5dXF5tlx8vagMbehYUeE0ZZZoUTtHkOMck5pTwzqqccsIYQox51inFdNOCGWcqg1FWltTKFfvg-NZdzvpwXbGhjGpXm6TH1S6lVF5-e8k-I1cxxspGEONqIvAwYNAir8nm0c5-GxKMBVsnLIkrC2WMCa4oF_-Q6_jlEKJVyiBeTGORaHITJkUc07WPZnBSP4pT87lyVKe_Fue5GXp88sYTyuPbRWgnoFcRmFt0_Pfr8jeA2rQpjk</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Hubmann, S.</creator><creator>Budkin, G.V.</creator><creator>Urban, M.</creator><creator>Bel’kov, V.V.</creator><creator>Dmitriev, A.P.</creator><creator>Ziegler, J.</creator><creator>Kozlov, D.A.</creator><creator>Mikhailov, N.N.</creator><creator>Dvoretsky, S.A.</creator><creator>Kvon, Z.D.</creator><creator>Weiss, D.</creator><creator>Ganichev, S.D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201001</creationdate><title>Impact Ionization Induced by Terahertz Radiation in HgTe Quantum Wells of Critical Thickness</title><author>Hubmann, S. ; Budkin, G.V. ; Urban, M. ; Bel’kov, V.V. ; Dmitriev, A.P. ; Ziegler, J. ; Kozlov, D.A. ; Mikhailov, N.N. ; Dvoretsky, S.A. ; Kvon, Z.D. ; Weiss, D. ; Ganichev, S.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-48fb45e2b83ff20f6612364c5d4b195225a05ff5dba5bf88acfa3c40bbec4c5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angular momentum</topic><topic>Classical Electrodynamics</topic><topic>Current carriers</topic><topic>Electric fields</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Energy gap</topic><topic>Engineering</topic><topic>Holes (electron deficiencies)</topic><topic>Instrumentation</topic><topic>Ionization</topic><topic>Multiplication</topic><topic>Quantum wells</topic><topic>Radiation</topic><topic>Radiation effects</topic><topic>Relaxation time</topic><topic>Terahertz frequencies</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hubmann, S.</creatorcontrib><creatorcontrib>Budkin, G.V.</creatorcontrib><creatorcontrib>Urban, M.</creatorcontrib><creatorcontrib>Bel’kov, V.V.</creatorcontrib><creatorcontrib>Dmitriev, A.P.</creatorcontrib><creatorcontrib>Ziegler, J.</creatorcontrib><creatorcontrib>Kozlov, D.A.</creatorcontrib><creatorcontrib>Mikhailov, N.N.</creatorcontrib><creatorcontrib>Dvoretsky, S.A.</creatorcontrib><creatorcontrib>Kvon, Z.D.</creatorcontrib><creatorcontrib>Weiss, D.</creatorcontrib><creatorcontrib>Ganichev, S.D.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of infrared, millimeter and terahertz waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hubmann, S.</au><au>Budkin, G.V.</au><au>Urban, M.</au><au>Bel’kov, V.V.</au><au>Dmitriev, A.P.</au><au>Ziegler, J.</au><au>Kozlov, D.A.</au><au>Mikhailov, N.N.</au><au>Dvoretsky, S.A.</au><au>Kvon, Z.D.</au><au>Weiss, D.</au><au>Ganichev, S.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact Ionization Induced by Terahertz Radiation in HgTe Quantum Wells of Critical Thickness</atitle><jtitle>Journal of infrared, millimeter and terahertz waves</jtitle><stitle>J Infrared Milli Terahz Waves</stitle><addtitle>J Infrared Millim Terahertz Waves</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>41</volume><issue>10</issue><spage>1155</spage><epage>1169</epage><pages>1155-1169</pages><issn>1866-6892</issn><eissn>1866-6906</eissn><abstract>We report on the observation of terahertz (THz) radiation induced band-to-band impact ionization in HgTe quantum well (QW) structures of critical thickness, which are characterized by a nearly linear energy dispersion. The THz electric field drives the carriers initializing electron-hole pair generation. The carrier multiplication is observed for photon energies less than the energy gap under the condition that the product of the radiation angular frequency ω and momentum relaxation time τ l larger than unity. In this case, the charge carriers acquire high energies solely because of collisions in the presence of a high-frequency electric field. The developed microscopic theory shows that the probability of the light-induced impact ionization is proportional to exp ( − E 0 2 / E 2 ) , with the radiation electric field amplitude E and the characteristic field parameter E 0 . As observed in experiment, it exhibits a strong frequency dependence for ω τ ≫ 1 characterized by the characteristic field E 0 linearly increasing with the radiation frequency ω .</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34721704</pmid><doi>10.1007/s10762-020-00690-6</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1866-6892
ispartof Journal of infrared, millimeter and terahertz waves, 2020-10, Vol.41 (10), p.1155-1169
issn 1866-6892
1866-6906
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550783
source Springer Nature
subjects Angular momentum
Classical Electrodynamics
Current carriers
Electric fields
Electrical Engineering
Electronics and Microelectronics
Energy gap
Engineering
Holes (electron deficiencies)
Instrumentation
Ionization
Multiplication
Quantum wells
Radiation
Radiation effects
Relaxation time
Terahertz frequencies
Thickness
title Impact Ionization Induced by Terahertz Radiation in HgTe Quantum Wells of Critical Thickness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20Ionization%20Induced%20by%20Terahertz%20Radiation%20in%20HgTe%20Quantum%20Wells%20of%20Critical%20Thickness&rft.jtitle=Journal%20of%20infrared,%20millimeter%20and%20terahertz%20waves&rft.au=Hubmann,%20S.&rft.date=2020-10-01&rft.volume=41&rft.issue=10&rft.spage=1155&rft.epage=1169&rft.pages=1155-1169&rft.issn=1866-6892&rft.eissn=1866-6906&rft_id=info:doi/10.1007/s10762-020-00690-6&rft_dat=%3Cproquest_pubme%3E2581636418%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-48fb45e2b83ff20f6612364c5d4b195225a05ff5dba5bf88acfa3c40bbec4c5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2581636418&rft_id=info:pmid/34721704&rfr_iscdi=true