Loading…
An Efficient PCA-GA-HKSVM-Based Disease Diagnostic Assistant
Disease diagnosis faces challenges such as misdiagnosis, lack of diagnosis, and slow diagnosis. There are several machine learning techniques that have been applied to address these challenges, where a set of symptoms is applied to a classification model that predicts the presence or absence of a di...
Saved in:
Published in: | BioMed research international 2021-10, Vol.2021, p.4784057-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c476t-baedb20fc22ef06d33721ea4ce8802c2c1b191350ce338d9ad710124b877930b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c476t-baedb20fc22ef06d33721ea4ce8802c2c1b191350ce338d9ad710124b877930b3 |
container_end_page | 10 |
container_issue | |
container_start_page | 4784057 |
container_title | BioMed research international |
container_volume | 2021 |
creator | Jerop, Brenda Segera, Davies Rene |
description | Disease diagnosis faces challenges such as misdiagnosis, lack of diagnosis, and slow diagnosis. There are several machine learning techniques that have been applied to address these challenges, where a set of symptoms is applied to a classification model that predicts the presence or absence of a disease. To improve on the performance of these techniques, this paper presents a technique which involves feature selection using principal component analysis (PCA), a hybrid kernel-based support vector machine (HKSVM) classification model and hyperparameter optimization using genetic algorithm (GA). The HKSVM in this paper introduces a new way of combining three kernels: Radial basis function (RBF), linear, and polynomial. Combining local (RBF) and global (linear and polynomial) kernels has the effect of improved model performance. This is because the local kernels are better able to distinguish points closer to each other while the global kernels are more suited to distinguish points that are far away from each other. The PCA-GA-HKSVM is used on 7 different medical datasets, with two datasets being multiclass datasets and 5 datasets being binary. Performance evaluation metrics used were accuracy, precision, and recall. It was observed that the PCA-GA-HKSVM offered better performance than the single kernel support vector machines (SVMs). |
doi_str_mv | 10.1155/2021/4784057 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696845651</galeid><sourcerecordid>A696845651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-baedb20fc22ef06d33721ea4ce8802c2c1b191350ce338d9ad710124b877930b3</originalsourceid><addsrcrecordid>eNp9kU1LJDEQhoMoKurNswx4EbQ1le8GEdrR1UWXXfDjGtLp9BjpSY-dHsV_vxlmHFcPm0sV5OGpKl6EdgEfA3B-QjCBEyYVw1yuoE1CgWUCGKwue0o30E6Mzzg9BQLnYh1tUCYJkYJtotMiDC7r2lvvQj_4MyyyqyK7vrl7_JWdm-iqwYWPLjWpmlFoY-_toIjRx96Efhut1aaJbmdRt9DDj8v74XV2-_vq57C4zSyTos9K46qS4NoS4mosKkolAWeYdUphYomFEnKgHFtHqapyU0nAQFippMwpLukWOpt7J9Ny7CqbVu1MoyedH5vuXbfG668_wT_pUfuqFedYkTwJDhaCrn2ZutjrsY_WNY0Jrp1GTXie5hGKeUL3v6HP7bQL6bxEqZxLUFx-UiPTOO1D3aa5dibVhciFYlxwSNTRnLJdG2Pn6uXKgPUsPz3LTy_yS_jev2cu4Y-0EnA4B558qMyb_7_uL012nho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2589571857</pqid></control><display><type>article</type><title>An Efficient PCA-GA-HKSVM-Based Disease Diagnostic Assistant</title><source>Publicly Available Content Database</source><source>Wiley_OA刊</source><source>Coronavirus Research Database</source><creator>Jerop, Brenda ; Segera, Davies Rene</creator><contributor>Chen, Hsian Min ; Hsian Min Chen</contributor><creatorcontrib>Jerop, Brenda ; Segera, Davies Rene ; Chen, Hsian Min ; Hsian Min Chen</creatorcontrib><description>Disease diagnosis faces challenges such as misdiagnosis, lack of diagnosis, and slow diagnosis. There are several machine learning techniques that have been applied to address these challenges, where a set of symptoms is applied to a classification model that predicts the presence or absence of a disease. To improve on the performance of these techniques, this paper presents a technique which involves feature selection using principal component analysis (PCA), a hybrid kernel-based support vector machine (HKSVM) classification model and hyperparameter optimization using genetic algorithm (GA). The HKSVM in this paper introduces a new way of combining three kernels: Radial basis function (RBF), linear, and polynomial. Combining local (RBF) and global (linear and polynomial) kernels has the effect of improved model performance. This is because the local kernels are better able to distinguish points closer to each other while the global kernels are more suited to distinguish points that are far away from each other. The PCA-GA-HKSVM is used on 7 different medical datasets, with two datasets being multiclass datasets and 5 datasets being binary. Performance evaluation metrics used were accuracy, precision, and recall. It was observed that the PCA-GA-HKSVM offered better performance than the single kernel support vector machines (SVMs).</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2021/4784057</identifier><identifier>PMID: 34722764</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Algorithms ; Analysis ; Artificial intelligence ; Classification ; Datasets ; Diagnosis ; Diagnosis, Differential ; Diagnostic Techniques and Procedures - instrumentation ; Early Diagnosis ; Genetic algorithms ; Genetic vectors ; Health aspects ; Humans ; Kernel functions ; Kernels ; Learning algorithms ; Machine Learning ; Methods ; Neural networks ; Optimization ; Performance evaluation ; Polynomials ; Principal Component Analysis - methods ; Principal components analysis ; Radial basis function ; Signs and symptoms ; Support Vector Machine ; Support vector machines</subject><ispartof>BioMed research international, 2021-10, Vol.2021, p.4784057-10</ispartof><rights>Copyright © 2021 Brenda Jerop and Davies Rene Segera.</rights><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><rights>Copyright © 2021 Brenda Jerop and Davies Rene Segera. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Brenda Jerop and Davies Rene Segera. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-baedb20fc22ef06d33721ea4ce8802c2c1b191350ce338d9ad710124b877930b3</citedby><cites>FETCH-LOGICAL-c476t-baedb20fc22ef06d33721ea4ce8802c2c1b191350ce338d9ad710124b877930b3</cites><orcidid>0000-0002-7069-9481 ; 0000-0002-4243-6801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2589571857/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2589571857?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34722764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Hsian Min</contributor><contributor>Hsian Min Chen</contributor><creatorcontrib>Jerop, Brenda</creatorcontrib><creatorcontrib>Segera, Davies Rene</creatorcontrib><title>An Efficient PCA-GA-HKSVM-Based Disease Diagnostic Assistant</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Disease diagnosis faces challenges such as misdiagnosis, lack of diagnosis, and slow diagnosis. There are several machine learning techniques that have been applied to address these challenges, where a set of symptoms is applied to a classification model that predicts the presence or absence of a disease. To improve on the performance of these techniques, this paper presents a technique which involves feature selection using principal component analysis (PCA), a hybrid kernel-based support vector machine (HKSVM) classification model and hyperparameter optimization using genetic algorithm (GA). The HKSVM in this paper introduces a new way of combining three kernels: Radial basis function (RBF), linear, and polynomial. Combining local (RBF) and global (linear and polynomial) kernels has the effect of improved model performance. This is because the local kernels are better able to distinguish points closer to each other while the global kernels are more suited to distinguish points that are far away from each other. The PCA-GA-HKSVM is used on 7 different medical datasets, with two datasets being multiclass datasets and 5 datasets being binary. Performance evaluation metrics used were accuracy, precision, and recall. It was observed that the PCA-GA-HKSVM offered better performance than the single kernel support vector machines (SVMs).</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Datasets</subject><subject>Diagnosis</subject><subject>Diagnosis, Differential</subject><subject>Diagnostic Techniques and Procedures - instrumentation</subject><subject>Early Diagnosis</subject><subject>Genetic algorithms</subject><subject>Genetic vectors</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Kernel functions</subject><subject>Kernels</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Polynomials</subject><subject>Principal Component Analysis - methods</subject><subject>Principal components analysis</subject><subject>Radial basis function</subject><subject>Signs and symptoms</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kU1LJDEQhoMoKurNswx4EbQ1le8GEdrR1UWXXfDjGtLp9BjpSY-dHsV_vxlmHFcPm0sV5OGpKl6EdgEfA3B-QjCBEyYVw1yuoE1CgWUCGKwue0o30E6Mzzg9BQLnYh1tUCYJkYJtotMiDC7r2lvvQj_4MyyyqyK7vrl7_JWdm-iqwYWPLjWpmlFoY-_toIjRx96Efhut1aaJbmdRt9DDj8v74XV2-_vq57C4zSyTos9K46qS4NoS4mosKkolAWeYdUphYomFEnKgHFtHqapyU0nAQFippMwpLukWOpt7J9Ny7CqbVu1MoyedH5vuXbfG668_wT_pUfuqFedYkTwJDhaCrn2ZutjrsY_WNY0Jrp1GTXie5hGKeUL3v6HP7bQL6bxEqZxLUFx-UiPTOO1D3aa5dibVhciFYlxwSNTRnLJdG2Pn6uXKgPUsPz3LTy_yS_jev2cu4Y-0EnA4B558qMyb_7_uL012nho</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>Jerop, Brenda</creator><creator>Segera, Davies Rene</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7069-9481</orcidid><orcidid>https://orcid.org/0000-0002-4243-6801</orcidid></search><sort><creationdate>20211020</creationdate><title>An Efficient PCA-GA-HKSVM-Based Disease Diagnostic Assistant</title><author>Jerop, Brenda ; Segera, Davies Rene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-baedb20fc22ef06d33721ea4ce8802c2c1b191350ce338d9ad710124b877930b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Datasets</topic><topic>Diagnosis</topic><topic>Diagnosis, Differential</topic><topic>Diagnostic Techniques and Procedures - instrumentation</topic><topic>Early Diagnosis</topic><topic>Genetic algorithms</topic><topic>Genetic vectors</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Kernel functions</topic><topic>Kernels</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Polynomials</topic><topic>Principal Component Analysis - methods</topic><topic>Principal components analysis</topic><topic>Radial basis function</topic><topic>Signs and symptoms</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jerop, Brenda</creatorcontrib><creatorcontrib>Segera, Davies Rene</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jerop, Brenda</au><au>Segera, Davies Rene</au><au>Chen, Hsian Min</au><au>Hsian Min Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient PCA-GA-HKSVM-Based Disease Diagnostic Assistant</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2021-10-20</date><risdate>2021</risdate><volume>2021</volume><spage>4784057</spage><epage>10</epage><pages>4784057-10</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Disease diagnosis faces challenges such as misdiagnosis, lack of diagnosis, and slow diagnosis. There are several machine learning techniques that have been applied to address these challenges, where a set of symptoms is applied to a classification model that predicts the presence or absence of a disease. To improve on the performance of these techniques, this paper presents a technique which involves feature selection using principal component analysis (PCA), a hybrid kernel-based support vector machine (HKSVM) classification model and hyperparameter optimization using genetic algorithm (GA). The HKSVM in this paper introduces a new way of combining three kernels: Radial basis function (RBF), linear, and polynomial. Combining local (RBF) and global (linear and polynomial) kernels has the effect of improved model performance. This is because the local kernels are better able to distinguish points closer to each other while the global kernels are more suited to distinguish points that are far away from each other. The PCA-GA-HKSVM is used on 7 different medical datasets, with two datasets being multiclass datasets and 5 datasets being binary. Performance evaluation metrics used were accuracy, precision, and recall. It was observed that the PCA-GA-HKSVM offered better performance than the single kernel support vector machines (SVMs).</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>34722764</pmid><doi>10.1155/2021/4784057</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7069-9481</orcidid><orcidid>https://orcid.org/0000-0002-4243-6801</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2021-10, Vol.2021, p.4784057-10 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550829 |
source | Publicly Available Content Database; Wiley_OA刊; Coronavirus Research Database |
subjects | Algorithms Analysis Artificial intelligence Classification Datasets Diagnosis Diagnosis, Differential Diagnostic Techniques and Procedures - instrumentation Early Diagnosis Genetic algorithms Genetic vectors Health aspects Humans Kernel functions Kernels Learning algorithms Machine Learning Methods Neural networks Optimization Performance evaluation Polynomials Principal Component Analysis - methods Principal components analysis Radial basis function Signs and symptoms Support Vector Machine Support vector machines |
title | An Efficient PCA-GA-HKSVM-Based Disease Diagnostic Assistant |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20PCA-GA-HKSVM-Based%20Disease%20Diagnostic%20Assistant&rft.jtitle=BioMed%20research%20international&rft.au=Jerop,%20Brenda&rft.date=2021-10-20&rft.volume=2021&rft.spage=4784057&rft.epage=10&rft.pages=4784057-10&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2021/4784057&rft_dat=%3Cgale_pubme%3EA696845651%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-baedb20fc22ef06d33721ea4ce8802c2c1b191350ce338d9ad710124b877930b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2589571857&rft_id=info:pmid/34722764&rft_galeid=A696845651&rfr_iscdi=true |