Loading…

An Efficient PCA-GA-HKSVM-Based Disease Diagnostic Assistant

Disease diagnosis faces challenges such as misdiagnosis, lack of diagnosis, and slow diagnosis. There are several machine learning techniques that have been applied to address these challenges, where a set of symptoms is applied to a classification model that predicts the presence or absence of a di...

Full description

Saved in:
Bibliographic Details
Published in:BioMed research international 2021-10, Vol.2021, p.4784057-10
Main Authors: Jerop, Brenda, Segera, Davies Rene
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c476t-baedb20fc22ef06d33721ea4ce8802c2c1b191350ce338d9ad710124b877930b3
cites cdi_FETCH-LOGICAL-c476t-baedb20fc22ef06d33721ea4ce8802c2c1b191350ce338d9ad710124b877930b3
container_end_page 10
container_issue
container_start_page 4784057
container_title BioMed research international
container_volume 2021
creator Jerop, Brenda
Segera, Davies Rene
description Disease diagnosis faces challenges such as misdiagnosis, lack of diagnosis, and slow diagnosis. There are several machine learning techniques that have been applied to address these challenges, where a set of symptoms is applied to a classification model that predicts the presence or absence of a disease. To improve on the performance of these techniques, this paper presents a technique which involves feature selection using principal component analysis (PCA), a hybrid kernel-based support vector machine (HKSVM) classification model and hyperparameter optimization using genetic algorithm (GA). The HKSVM in this paper introduces a new way of combining three kernels: Radial basis function (RBF), linear, and polynomial. Combining local (RBF) and global (linear and polynomial) kernels has the effect of improved model performance. This is because the local kernels are better able to distinguish points closer to each other while the global kernels are more suited to distinguish points that are far away from each other. The PCA-GA-HKSVM is used on 7 different medical datasets, with two datasets being multiclass datasets and 5 datasets being binary. Performance evaluation metrics used were accuracy, precision, and recall. It was observed that the PCA-GA-HKSVM offered better performance than the single kernel support vector machines (SVMs).
doi_str_mv 10.1155/2021/4784057
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696845651</galeid><sourcerecordid>A696845651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-baedb20fc22ef06d33721ea4ce8802c2c1b191350ce338d9ad710124b877930b3</originalsourceid><addsrcrecordid>eNp9kU1LJDEQhoMoKurNswx4EbQ1le8GEdrR1UWXXfDjGtLp9BjpSY-dHsV_vxlmHFcPm0sV5OGpKl6EdgEfA3B-QjCBEyYVw1yuoE1CgWUCGKwue0o30E6Mzzg9BQLnYh1tUCYJkYJtotMiDC7r2lvvQj_4MyyyqyK7vrl7_JWdm-iqwYWPLjWpmlFoY-_toIjRx96Efhut1aaJbmdRt9DDj8v74XV2-_vq57C4zSyTos9K46qS4NoS4mosKkolAWeYdUphYomFEnKgHFtHqapyU0nAQFippMwpLukWOpt7J9Ny7CqbVu1MoyedH5vuXbfG668_wT_pUfuqFedYkTwJDhaCrn2ZutjrsY_WNY0Jrp1GTXie5hGKeUL3v6HP7bQL6bxEqZxLUFx-UiPTOO1D3aa5dibVhciFYlxwSNTRnLJdG2Pn6uXKgPUsPz3LTy_yS_jev2cu4Y-0EnA4B558qMyb_7_uL012nho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2589571857</pqid></control><display><type>article</type><title>An Efficient PCA-GA-HKSVM-Based Disease Diagnostic Assistant</title><source>Publicly Available Content Database</source><source>Wiley_OA刊</source><source>Coronavirus Research Database</source><creator>Jerop, Brenda ; Segera, Davies Rene</creator><contributor>Chen, Hsian Min ; Hsian Min Chen</contributor><creatorcontrib>Jerop, Brenda ; Segera, Davies Rene ; Chen, Hsian Min ; Hsian Min Chen</creatorcontrib><description>Disease diagnosis faces challenges such as misdiagnosis, lack of diagnosis, and slow diagnosis. There are several machine learning techniques that have been applied to address these challenges, where a set of symptoms is applied to a classification model that predicts the presence or absence of a disease. To improve on the performance of these techniques, this paper presents a technique which involves feature selection using principal component analysis (PCA), a hybrid kernel-based support vector machine (HKSVM) classification model and hyperparameter optimization using genetic algorithm (GA). The HKSVM in this paper introduces a new way of combining three kernels: Radial basis function (RBF), linear, and polynomial. Combining local (RBF) and global (linear and polynomial) kernels has the effect of improved model performance. This is because the local kernels are better able to distinguish points closer to each other while the global kernels are more suited to distinguish points that are far away from each other. The PCA-GA-HKSVM is used on 7 different medical datasets, with two datasets being multiclass datasets and 5 datasets being binary. Performance evaluation metrics used were accuracy, precision, and recall. It was observed that the PCA-GA-HKSVM offered better performance than the single kernel support vector machines (SVMs).</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2021/4784057</identifier><identifier>PMID: 34722764</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Algorithms ; Analysis ; Artificial intelligence ; Classification ; Datasets ; Diagnosis ; Diagnosis, Differential ; Diagnostic Techniques and Procedures - instrumentation ; Early Diagnosis ; Genetic algorithms ; Genetic vectors ; Health aspects ; Humans ; Kernel functions ; Kernels ; Learning algorithms ; Machine Learning ; Methods ; Neural networks ; Optimization ; Performance evaluation ; Polynomials ; Principal Component Analysis - methods ; Principal components analysis ; Radial basis function ; Signs and symptoms ; Support Vector Machine ; Support vector machines</subject><ispartof>BioMed research international, 2021-10, Vol.2021, p.4784057-10</ispartof><rights>Copyright © 2021 Brenda Jerop and Davies Rene Segera.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2021 Brenda Jerop and Davies Rene Segera. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Brenda Jerop and Davies Rene Segera. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-baedb20fc22ef06d33721ea4ce8802c2c1b191350ce338d9ad710124b877930b3</citedby><cites>FETCH-LOGICAL-c476t-baedb20fc22ef06d33721ea4ce8802c2c1b191350ce338d9ad710124b877930b3</cites><orcidid>0000-0002-7069-9481 ; 0000-0002-4243-6801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2589571857/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2589571857?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34722764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Hsian Min</contributor><contributor>Hsian Min Chen</contributor><creatorcontrib>Jerop, Brenda</creatorcontrib><creatorcontrib>Segera, Davies Rene</creatorcontrib><title>An Efficient PCA-GA-HKSVM-Based Disease Diagnostic Assistant</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Disease diagnosis faces challenges such as misdiagnosis, lack of diagnosis, and slow diagnosis. There are several machine learning techniques that have been applied to address these challenges, where a set of symptoms is applied to a classification model that predicts the presence or absence of a disease. To improve on the performance of these techniques, this paper presents a technique which involves feature selection using principal component analysis (PCA), a hybrid kernel-based support vector machine (HKSVM) classification model and hyperparameter optimization using genetic algorithm (GA). The HKSVM in this paper introduces a new way of combining three kernels: Radial basis function (RBF), linear, and polynomial. Combining local (RBF) and global (linear and polynomial) kernels has the effect of improved model performance. This is because the local kernels are better able to distinguish points closer to each other while the global kernels are more suited to distinguish points that are far away from each other. The PCA-GA-HKSVM is used on 7 different medical datasets, with two datasets being multiclass datasets and 5 datasets being binary. Performance evaluation metrics used were accuracy, precision, and recall. It was observed that the PCA-GA-HKSVM offered better performance than the single kernel support vector machines (SVMs).</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Datasets</subject><subject>Diagnosis</subject><subject>Diagnosis, Differential</subject><subject>Diagnostic Techniques and Procedures - instrumentation</subject><subject>Early Diagnosis</subject><subject>Genetic algorithms</subject><subject>Genetic vectors</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Kernel functions</subject><subject>Kernels</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Polynomials</subject><subject>Principal Component Analysis - methods</subject><subject>Principal components analysis</subject><subject>Radial basis function</subject><subject>Signs and symptoms</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kU1LJDEQhoMoKurNswx4EbQ1le8GEdrR1UWXXfDjGtLp9BjpSY-dHsV_vxlmHFcPm0sV5OGpKl6EdgEfA3B-QjCBEyYVw1yuoE1CgWUCGKwue0o30E6Mzzg9BQLnYh1tUCYJkYJtotMiDC7r2lvvQj_4MyyyqyK7vrl7_JWdm-iqwYWPLjWpmlFoY-_toIjRx96Efhut1aaJbmdRt9DDj8v74XV2-_vq57C4zSyTos9K46qS4NoS4mosKkolAWeYdUphYomFEnKgHFtHqapyU0nAQFippMwpLukWOpt7J9Ny7CqbVu1MoyedH5vuXbfG668_wT_pUfuqFedYkTwJDhaCrn2ZutjrsY_WNY0Jrp1GTXie5hGKeUL3v6HP7bQL6bxEqZxLUFx-UiPTOO1D3aa5dibVhciFYlxwSNTRnLJdG2Pn6uXKgPUsPz3LTy_yS_jev2cu4Y-0EnA4B558qMyb_7_uL012nho</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>Jerop, Brenda</creator><creator>Segera, Davies Rene</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7069-9481</orcidid><orcidid>https://orcid.org/0000-0002-4243-6801</orcidid></search><sort><creationdate>20211020</creationdate><title>An Efficient PCA-GA-HKSVM-Based Disease Diagnostic Assistant</title><author>Jerop, Brenda ; Segera, Davies Rene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-baedb20fc22ef06d33721ea4ce8802c2c1b191350ce338d9ad710124b877930b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Datasets</topic><topic>Diagnosis</topic><topic>Diagnosis, Differential</topic><topic>Diagnostic Techniques and Procedures - instrumentation</topic><topic>Early Diagnosis</topic><topic>Genetic algorithms</topic><topic>Genetic vectors</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Kernel functions</topic><topic>Kernels</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Polynomials</topic><topic>Principal Component Analysis - methods</topic><topic>Principal components analysis</topic><topic>Radial basis function</topic><topic>Signs and symptoms</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jerop, Brenda</creatorcontrib><creatorcontrib>Segera, Davies Rene</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jerop, Brenda</au><au>Segera, Davies Rene</au><au>Chen, Hsian Min</au><au>Hsian Min Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient PCA-GA-HKSVM-Based Disease Diagnostic Assistant</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2021-10-20</date><risdate>2021</risdate><volume>2021</volume><spage>4784057</spage><epage>10</epage><pages>4784057-10</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Disease diagnosis faces challenges such as misdiagnosis, lack of diagnosis, and slow diagnosis. There are several machine learning techniques that have been applied to address these challenges, where a set of symptoms is applied to a classification model that predicts the presence or absence of a disease. To improve on the performance of these techniques, this paper presents a technique which involves feature selection using principal component analysis (PCA), a hybrid kernel-based support vector machine (HKSVM) classification model and hyperparameter optimization using genetic algorithm (GA). The HKSVM in this paper introduces a new way of combining three kernels: Radial basis function (RBF), linear, and polynomial. Combining local (RBF) and global (linear and polynomial) kernels has the effect of improved model performance. This is because the local kernels are better able to distinguish points closer to each other while the global kernels are more suited to distinguish points that are far away from each other. The PCA-GA-HKSVM is used on 7 different medical datasets, with two datasets being multiclass datasets and 5 datasets being binary. Performance evaluation metrics used were accuracy, precision, and recall. It was observed that the PCA-GA-HKSVM offered better performance than the single kernel support vector machines (SVMs).</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>34722764</pmid><doi>10.1155/2021/4784057</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7069-9481</orcidid><orcidid>https://orcid.org/0000-0002-4243-6801</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2021-10, Vol.2021, p.4784057-10
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8550829
source Publicly Available Content Database; Wiley_OA刊; Coronavirus Research Database
subjects Algorithms
Analysis
Artificial intelligence
Classification
Datasets
Diagnosis
Diagnosis, Differential
Diagnostic Techniques and Procedures - instrumentation
Early Diagnosis
Genetic algorithms
Genetic vectors
Health aspects
Humans
Kernel functions
Kernels
Learning algorithms
Machine Learning
Methods
Neural networks
Optimization
Performance evaluation
Polynomials
Principal Component Analysis - methods
Principal components analysis
Radial basis function
Signs and symptoms
Support Vector Machine
Support vector machines
title An Efficient PCA-GA-HKSVM-Based Disease Diagnostic Assistant
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20PCA-GA-HKSVM-Based%20Disease%20Diagnostic%20Assistant&rft.jtitle=BioMed%20research%20international&rft.au=Jerop,%20Brenda&rft.date=2021-10-20&rft.volume=2021&rft.spage=4784057&rft.epage=10&rft.pages=4784057-10&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2021/4784057&rft_dat=%3Cgale_pubme%3EA696845651%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-baedb20fc22ef06d33721ea4ce8802c2c1b191350ce338d9ad710124b877930b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2589571857&rft_id=info:pmid/34722764&rft_galeid=A696845651&rfr_iscdi=true